Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Regularity of solutions of divergence form elliptic equations


Author: Maria Alessandra Ragusa
Journal: Proc. Amer. Math. Soc. 128 (2000), 533-540
MSC (1991): Primary 35B65, 32A37, 31B10; Secondary 46E35, 42B20
DOI: https://doi.org/10.1090/S0002-9939-99-05165-5
Published electronically: July 7, 1999
MathSciNet review: 1641085
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to study local regularity in the Morrey spaces $L^{p,\lambda}$ of the first derivatives of the solutions of an elliptic second order equation in divergence form

\begin{equation*}{\mathcal L} u \equiv -\sum _{i,j=1}^n (a_{ij}(x) u_{x_i})_{x_j} =div f(x)\quad \text{for a.a.}\ x\in \Omega, \end{equation*}

where $f$ is assumed to be in some $L^{p,\lambda}$ spaces and the coefficients $a_{ij}$ belong to the space $VMO.$


References [Enhancements On Off] (What's this?)

  • 1. P. ACQUISTAPACE, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl. 161 (1992), 231-269.MR 93i:35027
  • 2. F. CHIARENZA, M. FRASCA, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. 7 (1987), 273-279.MR 90f:42017
  • 3. F. CHIARENZA, M. FRASCA, P. LONGO, Interior $W^{2,p}$ estimates for non-divergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991), 149-168.MR 93k:35051
  • 4. F. CHIARENZA, M. FRASCA, P. LONGO, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $VMO$ coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853.MR 93f:35232
  • 5. G. DI FAZIO, $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. (7) 10-A (1996), 409-420. MR 97e:35034
  • 6. G. DI FAZIO, M.A. RAGUSA, Interior estimates in Morrey spaces for strong solutions to nondivergence form elliptic equations with discontinuous coefficients, J. Funct. Anal. 112 (1993), 241-256.MR 94e:35035
  • 7. F. JOHN, L. NIRENBERG, On functions of bounded mean oscillation, Commun. Pure Appl. Math. 14 (1961), 415-426.MR 24:A1348
  • 8. M. MANFREDINI, S. POLIDORO , Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients, to appear in Boll. U.M.I..
  • 9. S. POLIDORO, M.A.RAGUSA , Sobolev-Morrey spaces related to an ultraparabolic equation, to appear in Manuscripta Mathematica.
  • 10. D. SARASON, On functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
  • 11. G. STAMPACCHIA, Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinuous Ann. Inst. Fourier15 (1965), 189-258. MR 33:404

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35B65, 32A37, 31B10, 46E35, 42B20

Retrieve articles in all journals with MSC (1991): 35B65, 32A37, 31B10, 46E35, 42B20


Additional Information

Maria Alessandra Ragusa
Affiliation: Dipartimento di Matematica, Università di Catania, Viale A. Doria, 6, 95125 Catania, Italy
Email: maragusa@dipmat.unict.it

DOI: https://doi.org/10.1090/S0002-9939-99-05165-5
Keywords: Elliptic equations, Morrey spaces, VMO
Received by editor(s): April 6, 1998
Published electronically: July 7, 1999
Dedicated: Dedicated to the memory of two friends Filippo Chiarenza and Gene Fabes
Communicated by: Lesley M. Sibner
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society