The best possibility

of the grand Furuta inequality

Author:
Kôtarô Tanahashi

Journal:
Proc. Amer. Math. Soc. **128** (2000), 511-519

MSC (1991):
Primary 47B15

DOI:
https://doi.org/10.1090/S0002-9939-99-05261-2

Published electronically:
July 6, 1999

MathSciNet review:
1654088

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be invertible bounded linear operators on a Hilbert space satisfying , and let be real numbers satisfying Furuta showed that if , then . This inequality is called the grand Furuta inequality, which interpolates the Furuta inequality

and the Ando-Hiai inequality ( ).

In this paper, we show the grand Furuta inequality is best possible in the following sense: that is, if , then there exist invertible matrices with which do not satisfy .

**[1]**N. N. Chan and M. K. Kwong,*Hermitian matrix inequalities and a conjecture,*Amer. Math. Monthly,**92**(1985), 533-541. MR**87d:15011****[2]**A. Aluthge,*Some generalized theorems on -hyponormal operators,*Integr. Equat. Oper. Th.,**24**(1994), 497-501. MR**97a:47032****[3]**M. Fujii, T. Furuta, E. Kamei*Complements to the Furuta inequality,*Journal of the Japan Academy,**70**(1994), 239-242. MR**95j:47018****[4]**T. Furuta,*assures for with ,*Proc. Amer. Math. Soc.**101**(1987), 85-88. MR**89b:47028****[5]**T. Furuta,*Applications of order preserving operator inequality*, Oper. Theory Adv. Appl.**59**(1992), 180-190. MR**94m:47033****[6]**T. Furuta,*Furuta's inequality and its application to the relative operator entropy*, J. Operator Theory,**30**(1993), 21-30. MR**95j:47019****[7]**T. Furuta,*Extension of the Furuta inequality and Ando-Hiai log-majorization*, Linear Alg. and its Appl.,**219**(1995), 139-155. MR**96k:47031****[8]**T. Furuta,*Generalized Aluthge transformation on -hyponormal operators*, Proc. Amer. Math. Soc.,**124**(1996), 3071-3075. MR**96m:47041****[9]**E. Heinz,*Beiträge zur Störungstheorie der Spektralzerlegung,*Math. Ann.,**123**(1951), 415-438. MR**13:471f****[10]**K. Löwner,*Über monotone Matrixfunktionen,*Math. Z.,**38**(1934), 177-216.**[11]**K. Tanahashi,*Best possibility of the Furuta inequality,*Proc. Amer. Math. Soc.**124**(1996), 141-146. MR**96d:47025****[12]**K. Tanahashi,*The Furuta inequality with negative power,*Proc. Amer. Math. Soc. (to appear). CMP**98:03****[13]**T. Yoshino,*A modified Heinz's inequality,*(preprint)

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47B15

Retrieve articles in all journals with MSC (1991): 47B15

Additional Information

**Kôtarô Tanahashi**

Email:
tanahasi@tohoku-pharm.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-99-05261-2

Keywords:
The L\"owner-Heinz inequality,
the Furuta inequality,
the grand Furuta inequality

Received by editor(s):
September 27, 1997

Received by editor(s) in revised form:
March 31, 1998

Published electronically:
July 6, 1999

Communicated by:
David R. Larson

Article copyright:
© Copyright 1999
American Mathematical Society