Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The principal axis theorem
for holomorphic functions


Authors: Joachim Gräter and Markus Klein
Journal: Proc. Amer. Math. Soc. 128 (2000), 325-335
MSC (1991): Primary 12D15, 12J10, 15A54, 34E10, 81Q15
DOI: https://doi.org/10.1090/S0002-9939-99-05451-9
Published electronically: September 27, 1999
MathSciNet review: 1690988
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An algebraic approach to Rellich's theorem is given which states that any analytic family of matrices which is normal on the real axis can be diagonalized by an analytic family of matrices which is unitary on the real axis. We show that this result is a special version of a purely algebraic theorem on the diagonalization of matrices over fields with henselian valuations.


References [Enhancements On Off] (What's this?)

  • [Ba] H. Baumgärtel, Endlichdimensionale analytische Störungstheorie, Akademie Verlag, 1972 MR 58:30389
  • [BK] E. Brieskorn, H. Knörrer, Ebene algebraische Kurven, Birkhäuser, 1981 MR 83i:14001
  • [C] P. M. Cohn, Puiseux's Theorem Revisited, J. Pure and App. Alg. 31 (1984), 1-4 MR 85d:14035; MR 89e:14022
  • [CC] A. Charnow, E. Charnow, Fields for which the principal axis theorem is valid, Math. Mag. 59 (1986), 222-225 MR 88c:12001a
  • [E] O. Endler, Valuation Theory, Springer, 1972 MR 50:9847
  • [F] G. Fischer, Ebene algebraische Kurven, Vieweg, 1994
  • [Hi] E. Hill, Analytic Function Theory Vol. I, Chelsea Publishing Company, 1976
  • [H1] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, 1990 MR 91m:35001b
  • [H2] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1966 MR 34:2933
  • [Ka] T. Kato, Perturbation Theory for Linear Operators, Springer, 1976 MR 53:11389
  • [KS] M. Klein, E. Schwarz, An elementary approach to formal WKB expansions in $\mathbb{R}^n$, Rev. Math. Phys. 2 (1990), 441-456 MR 92d:35213
  • [L] S. Lang, Algebra, Addison-Wesley, 1993
  • [MSV] D. Mornhinweg, D. B. Shapiro, K. G. Valente, The Principal Axis Theorem over Arbitrary Fields, Amer. Math. Monthly 100 (1993), 749-754 MR 94h:11020
  • [R] P. Ribenboim, Equivalent forms of Hensel's lemma, Expo. Math. 3 (1985), 3-24 MR 87a:12014
  • [Re] F. Rellich, Störungstheorie der Spektralzerlegung, Math. Ann. 113 (1937), 600-619
  • [RS] M. Reed, B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, 1978 MR 58:12429c
  • [W] J. H. M. Wedderburn, On matrices whose coefficients are functions of a single variable, Trans. Amer. Math. Soc. 16 (1915), 328-332

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 12D15, 12J10, 15A54, 34E10, 81Q15

Retrieve articles in all journals with MSC (1991): 12D15, 12J10, 15A54, 34E10, 81Q15


Additional Information

Joachim Gräter
Affiliation: Universität Potsdam, Institut für Mathematik, Postfach 601553, 14469 Potsdam, Germany
Email: graeter@rz.uni-potsdam.de

Markus Klein
Affiliation: Universität Potsdam, Institut für Mathematik, Postfach 601553, 14469 Potsdam, Germany
Email: mklein@math.uni-potsdam.de

DOI: https://doi.org/10.1090/S0002-9939-99-05451-9
Keywords: Valuations, Hensel's Lemma, principal axis theorem, analytic perturbation theory
Received by editor(s): March 6, 1998
Published electronically: September 27, 1999
Communicated by: Steven R. Bell
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society