Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Multiplicative structure of Kauffman bracket skein module quantizations


Authors: Doug Bullock and Józef H. Przytycki
Journal: Proc. Amer. Math. Soc. 128 (2000), 923-931
MSC (1991): Primary 57M99
Published electronically: July 28, 1999
MathSciNet review: 1625701
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe, for a few small examples, the Kauffman bracket skein algebra of a surface crossed with an interval. If the surface is a punctured torus the result is a quantization of the symmetric algebra in three variables (and an algebra closely related to a cyclic quantization of $U(\mathfrak{so}_3$)). For a torus without boundary we obtain a quantization of ``the symmetric homologies" of a torus (equivalently, the coordinate ring of the $SL_2(\mathbb{C})$-character variety of $\mathbb{Z}\oplus\mathbb{Z}$). Presentations are also given for the four-punctured sphere and twice-punctured torus. We conclude with an investigation of central elements and zero divisors.


References [Enhancements On Off] (What's this?)

  • 1. D. Bullock, A finite set of generators for the Kauffman bracket skein algebra, Math. Z., to appear.
  • 2. D. Bullock, Rings of $SL_2(\mathbb{C})$-characters and the Kauffman bracket skein module, Comm. Math. Helv. 72 (1997), 521-542. CMP 98:07
  • 3. Robert D. Horowitz, Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math. 25 (1972), 635–649. MR 0314993
  • 4. Jim Hoste and Józef H. Przytycki, A survey of skein modules of 3-manifolds, Knots 90 (Osaka, 1990) de Gruyter, Berlin, 1992, pp. 363–379. MR 1177433
  • 5. A. V. Odesskiĭ, An analogue of the Sklyanin algebra, Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 78–79 (Russian). MR 847152
  • 6. Józef H. Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Sci. Math. 39 (1991), no. 1-2, 91–100. MR 1194712
  • 7. J. H. Przytycki, Introduction to algebraic topology based on knots, Proceedings of Knots 96, (S. Suzuki, ed.) World Scientific (1997) 279-297.
  • 8. J. H. Przytycki and A. Sikora, On skein algebras and $SL_2(\mathbb{C})$-character varieties, e-print: q-alg/9705011.
  • 9. J. H. Przytycki and A. Sikora, Skein algebra of a group, Proc. Banach Center Mini-Semseter on Knot Theory, to appear.
  • 10. C. K. Zachos, Quantum deformations, Quantum groups (Argonne, IL, 1990) World Sci. Publ., Teaneck, NJ, 1991, pp. 62–71. MR 1109753

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57M99

Retrieve articles in all journals with MSC (1991): 57M99


Additional Information

Doug Bullock
Affiliation: Department of Mathematics, The George Washington University, Washington, DC 20052
Address at time of publication: Department of Mathematics, University of Maryland, College Park, Maryland 20742
Email: bullock@math.umd.edu

Józef H. Przytycki
Affiliation: Department of Mathematics, The George Washington University, Washington, DC 20052
Email: przytyck@math.gwu.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-99-05043-1
Keywords: Knot, link, 3-manifold, skein module
Received by editor(s): November 17, 1997
Received by editor(s) in revised form: May 5, 1998
Published electronically: July 28, 1999
Additional Notes: The first author is supported by an NSF-DMS Postdoctoral Fellowship.
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 1999 American Mathematical Society