Multiplicative structure of Kauffman bracket skein module quantizations

Authors:
Doug Bullock and Józef H. Przytycki

Journal:
Proc. Amer. Math. Soc. **128** (2000), 923-931

MSC (1991):
Primary 57M99

DOI:
https://doi.org/10.1090/S0002-9939-99-05043-1

Published electronically:
July 28, 1999

MathSciNet review:
1625701

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe, for a few small examples, the Kauffman bracket skein algebra of a surface crossed with an interval. If the surface is a punctured torus the result is a quantization of the symmetric algebra in three variables (and an algebra closely related to a cyclic quantization of )). For a torus without boundary we obtain a quantization of ``the symmetric homologies" of a torus (equivalently, the coordinate ring of the -character variety of ). Presentations are also given for the four-punctured sphere and twice-punctured torus. We conclude with an investigation of central elements and zero divisors.

**1.**D. Bullock,*A finite set of generators for the Kauffman bracket skein algebra*, Math. Z., to appear.**2.**D. Bullock,*Rings of -characters and the Kauffman bracket skein module*, Comm. Math. Helv.**72**(1997), 521-542. CMP**98:07****3.**Robert D. Horowitz,*Characters of free groups represented in the two-dimensional special linear group*, Comm. Pure Appl. Math.**25**(1972), 635–649. MR**0314993**, https://doi.org/10.1002/cpa.3160250602**4.**Jim Hoste and Józef H. Przytycki,*A survey of skein modules of 3-manifolds*, Knots 90 (Osaka, 1990) de Gruyter, Berlin, 1992, pp. 363–379. MR**1177433****5.**A. V. Odesskiĭ,*An analogue of the Sklyanin algebra*, Funktsional. Anal. i Prilozhen.**20**(1986), no. 2, 78–79 (Russian). MR**847152****6.**Józef H. Przytycki,*Skein modules of 3-manifolds*, Bull. Polish Acad. Sci. Math.**39**(1991), no. 1-2, 91–100. MR**1194712****7.**J. H. Przytycki,*Introduction to algebraic topology based on knots*, Proceedings of Knots 96, (S. Suzuki, ed.) World Scientific (1997) 279-297.**8.**J. H. Przytycki and A. Sikora,*On skein algebras and -character varieties*, e-print: q-alg/9705011.**9.**J. H. Przytycki and A. Sikora,*Skein algebra of a group*, Proc. Banach Center Mini-Semseter on Knot Theory, to appear.**10.**C. K. Zachos,*Quantum deformations*, Quantum groups (Argonne, IL, 1990) World Sci. Publ., Teaneck, NJ, 1991, pp. 62–71. MR**1109753**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
57M99

Retrieve articles in all journals with MSC (1991): 57M99

Additional Information

**Doug Bullock**

Affiliation:
Department of Mathematics, The George Washington University, Washington, DC 20052

Address at time of publication:
Department of Mathematics, University of Maryland, College Park, Maryland 20742

Email:
bullock@math.umd.edu

**Józef H. Przytycki**

Affiliation:
Department of Mathematics, The George Washington University, Washington, DC 20052

Email:
przytyck@math.gwu.edu

DOI:
https://doi.org/10.1090/S0002-9939-99-05043-1

Keywords:
Knot,
link,
3-manifold,
skein module

Received by editor(s):
November 17, 1997

Received by editor(s) in revised form:
May 5, 1998

Published electronically:
July 28, 1999

Additional Notes:
The first author is supported by an NSF-DMS Postdoctoral Fellowship.

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 1999
American Mathematical Society