Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Quasi-isomorphisms of Koszul complexes


Author: José J. M. Soto
Journal: Proc. Amer. Math. Soc. 128 (2000), 713-715
MSC (1991): Primary 13H10, 13D03
Published electronically: March 3, 1999
MathSciNet review: 1626482
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $f:A\to B$ be a surjective homomorphism of noetherian local commutative rings that induces an isomorphism between the first Koszul homology modules and an epimorphism between the second Koszul homology modules. Then $f$ induces isomorphisms between Koszul homology modules in all dimensions.


References [Enhancements On Off] (What's this?)

  • 1. Michel André, Homologie des algèbres commutatives, Springer-Verlag, Berlin-New York, 1974 (French). Die Grundlehren der mathematischen Wissenschaften, Band 206. MR 0352220
  • 2. E. F. Assmus Jr., On the homology of local rings, Illinois J. Math. 3 (1959), 187–199. MR 0103907
  • 3. Luchezar Avramov, Descente des déviations par homomorphismes locaux et génération des idéaux de dimension projective finie, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 12, 665–668 (French, with English summary). MR 688902
  • 4. L. L. Avramov and E. S. Golod, The homology of algebra of the Koszul complex of a local Gorenstein ring, Mat. Zametki 9 (1971), 53–58 (Russian). MR 0279157
  • 5. Winfried Bruns, On the Koszul algebra of a local ring, Illinois J. Math. 37 (1993), no. 2, 278–283. MR 1208822
  • 6. Daniel Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 65–87. MR 0257068
  • 7. Antonio G. Rodicio, On a result of Avramov, Manuscripta Math. 62 (1988), no. 2, 181–185. MR 963004, 10.1007/BF01278977
  • 8. S. S. Strogalov, Quasiisomorphisms of a Koszul complex, Uspehi Mat. Nauk 28 (1973), no. 6(174), 196 (Russian). MR 0393011
  • 9. S. S. Strogalov, On Poincaré series, Math. USSR Izvestija 12 (1978), 391-425.
  • 10. John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27. MR 0086072

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13H10, 13D03

Retrieve articles in all journals with MSC (1991): 13H10, 13D03


Additional Information

José J. M. Soto
Affiliation: Departamento de Álgebra, Facultad de Matemáticas, Universidad de Santiago de Compostela, E-15771 Santiago de Compostela, Spain

DOI: https://doi.org/10.1090/S0002-9939-99-05071-6
Keywords: Koszul homology, regular sequence, complete intersection
Received by editor(s): February 10, 1997
Received by editor(s) in revised form: May 5, 1998
Published electronically: March 3, 1999
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 1999 American Mathematical Society