Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Product-trace-rings
and a question of G. S. Garfinkel


Author: Ralf Kemper
Journal: Proc. Amer. Math. Soc. 128 (2000), 709-712
MSC (1991): Primary 12J25, 13A18, 13C13, 13E05, 13F30, 13J10, 46N05
DOI: https://doi.org/10.1090/S0002-9939-99-05098-4
Published electronically: July 28, 1999
MathSciNet review: 1636970
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is an open question as to whether every left coherent ring $R$ satisfying the intersection property for finitely generated left ideals of $R$ is a right-product-trace-ring or not. $R$ is a right-product-trace-ring iff every product of trace-right-$R$-modules (= universally torsionless-right-$R$-modules) is a trace-right-$R$-module. This question is shown to have a negative answer. Furthermore, looking at all valuation domains, the complete product-trace-rings, the product-trace-rings and the product-content-rings are characterized.


References [Enhancements On Off] (What's this?)

  • [1] R.L. Ellis: The state of a bounded linear operator on a non-Archimedean normed space; J. Reine Angew. Math., 229 (1968), 155-162. MR 36:6958
  • [2] O. Endler: Valuation Theory; Springer-Verlag, Berlin, Heidelberg, New York (1972). MR 50:9847
  • [3] L. Fuchs, L. Salce: Modules over Valuation Domains; Lecture notes in pure and applied mathematics, 97, Marcel Dekker, New York (1985). MR 86h:13008
  • [4] G. S. Garfinkel: Universally Torsionless and Trace Modules; Trans. Amer. Math. Soc., 215 (1976), 119-144. MR 53:8136
  • [5] R. Gilmer: Multiplicative Ideal Theory; Pure and Applied Mathematics, 12, Marcel Dekker, New York (1972). MR 55:323
  • [6] L. Gruson, M. Raynaud: Critères de platitude et de projectivité. Techniques de ``platification'' d'un module; Invent. Math., 13 (1971), 1-89. MR 46:7219
  • [7] L. Narici, E. Beckenstein, G. Bachmann: Functional Analysis and Valuation Theory; Pure and Applied Mathematics, 5, Marcel Dekker, New York (1971). MR 50:14142
  • [8] J. Ohm, D.E. Rush: Content Modules and Algebras; Math. Scand., 31 (1972), 49-68. MR 49:9028
  • [9] A.C.M. van Rooij: Non-Archimedean Functional Analysis; Pure and Applied Mathematics, 51, Marcel Dekker, New York (1978). MR 81a:46084

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 12J25, 13A18, 13C13, 13E05, 13F30, 13J10, 46N05

Retrieve articles in all journals with MSC (1991): 12J25, 13A18, 13C13, 13E05, 13F30, 13J10, 46N05


Additional Information

Ralf Kemper
Affiliation: Fernuniversität, Fachbereich Mathematik, D 58084 Hagen, Germany

DOI: https://doi.org/10.1090/S0002-9939-99-05098-4
Keywords: Trace-module, universally torsionless module, product-trace-ring, ((maximally) complete) valuation domain, spherically complete field, content-module, content-ideal
Received by editor(s): November 25, 1997
Received by editor(s) in revised form: May 1, 1998
Published electronically: July 28, 1999
Dedicated: Dedicated to H. Röhrl on the occasion of his 70th birthday
Communicated by: Ken Goodearl
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society