Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Congruences between the coefficients
of the Tate curve via formal groups


Author: Antonios Broumas
Journal: Proc. Amer. Math. Soc. 128 (2000), 677-681
MSC (1991): Primary 11F33; Secondary 11G07, 14G20
DOI: https://doi.org/10.1090/S0002-9939-99-05133-3
Published electronically: July 6, 1999
MathSciNet review: 1641657
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E_q:Y^2+XY = X^3 + h_4 X + h_6$ be the Tate curve with canonical differential, $\omega = dX/(2Y+X)$. If the characteristic is $p>0$, then the Hasse invariant, $H$, of the pair $(E_q,\omega)$ should equal one. If $p>3$, then calculation of $H$ leads to a nontrivial separable relation between the coefficients $h_4$ and $h_6$. If $p =2$ or $p =3$, Thakur related $h_4$ and $h_6$ via elementary methods and an identity of Ramanujan. Here, we treat uniformly all characteristics via explicit calculation of the formal group law of $E_q$. Our analysis was motivated by the study of the invariant $A$ which is an infinite Witt vector generalizing the Hasse invariant.


References [Enhancements On Off] (What's this?)

  • [B] A. Broumas, The invariant $A$ and the moduli problem Ig$(p^n)$, in preparation.
  • [DR] P. Deligne, M. Rapoport, Les schemas des modules de courbes elliptiques, in Modular functions in one variable II, Lecture Notes in Math. 349 143-316, Springer-Verlag (1973). MR 49:2762
  • [D] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272. MR 3:104f
  • [H] M. Hazewinkel, Formal groups and applications, Pure and Applied Math. 78 Academic Press (1978). MR 82a:14020
  • [KM] N. Katz, B. Mazur, Arithmetic Moduli of Elliptic Curves, Princeton Univ. Press (1985). MR 86i:11024
  • [R] P. Roquette, Analytic theory of elliptic functions over local fields, Vandehoeck and Ruprecht, Göttingen (1970). MR 41:5376
  • [S] J. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math. 106 Springer-Verlag (1986). MR 87g:11070
  • [T] D. Thakur, Automata style proof of Voloch's result on transcendence, Journal of Number Theory 58 (1996) 60-62. MR 98a:11100

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11F33, 11G07, 14G20

Retrieve articles in all journals with MSC (1991): 11F33, 11G07, 14G20


Additional Information

Antonios Broumas
Affiliation: Mathematical Sciences Research Institute, 1000 Centennial Dr., Berkeley, California 94720
Email: antonios_m@yahoo.com

DOI: https://doi.org/10.1090/S0002-9939-99-05133-3
Keywords: Tate curve, Hasse invariant, formal group, $p$-typical, invariant $A$
Received by editor(s): April 27, 1998
Published electronically: July 6, 1999
Communicated by: David E. Rohrlich
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society