A module-theoretic approach

to Clifford theory for blocks

Author:
S. J. Witherspoon

Journal:
Proc. Amer. Math. Soc. **128** (2000), 661-670

MSC (1991):
Primary 20C20, 20C25

DOI:
https://doi.org/10.1090/S0002-9939-99-05224-7

Published electronically:
July 8, 1999

MathSciNet review:
1646212

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This work concerns a generalization of Clifford theory to blocks of group-graded algebras. A module-theoretic approach is taken to prove a one-to-one correspondence between the blocks of a fully group-graded algebra covering a given block of its identity component, and conjugacy classes of blocks of a twisted group algebra. In particular, this applies to blocks of a finite group covering blocks of a normal subgroup.

**1.**J. L. ALPERIN AND D. W. BURRY, Block theory with modules,*J. Algebra***65**(1980), pp. 661-670. MR**81k:20018****2.**D. J. BENSON,*Representations and Cohomology I: Basic representation theory of finite groups and associative algebras*, Cambridge University Press, 1991. MR**92m:20005****3.**P. R. BOISEN, The representation theory of fully group-graded algebras,*J. Algebra***151**(1992), pp. 661-670. MR**93i:20005****4.**A. H. CLIFFORD, Representations induced in an invariant subgroup,*Ann. of Math.*(2)**38**(1937), pp. 661-670.**5.**M. COHEN AND S. MONTGOMERY, Group-graded rings, smash products, and group actions,*Trans. Amer. Math. Soc.***282**(1984), pp. 661-670. MR**85i:16002****6.**C. W. CURTIS AND I. REINER,*Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I*, Wiley, 1981. MR**82i:20001****7.**-,*Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II*, Wiley, 1987. MR**88f:20002****8.**E. C. DADE, Compounding Clifford's theory,*Ann. of Math.***91**(1970), pp. 661-670. MR**41:6992****9.**-, Block extensions,*Illinois J. Math.***17**(1973), pp. 661-670. MR**48:6226****10.**-, Group-graded rings and modules,*Math. Z.***174**(1980), pp. 661-670. MR**82c:16028****11.**-, The equivalence of various generalizations of group rings and modules,*Math. Z.***181**(1982), pp. 661-670. MR**84a:16018****12.**-, Counting characters in blocks, I,*Inv. Math.***109**(1992), pp. 661-670. MR**93g:20021****13.**-, Counting characters in blocks, II,*J. reine angew. Math.***448**(1994), pp. 661-670. MR**95a:20007****14.**-, Clifford theory for blocks. Preprint, 1995.**15.**-, Counting characters in blocks, 2.9, in*Representation Theory of Finite Groups,*Proceedings of a Special Research Quarter at the Ohio State University, de Gruyter, 1997.MR**99b:20016****16.**H. ELLERS, Cliques of irreducible representations, quotient groups, and Brauer's theorems on blocks,*Can. J. Math.***47**(5) (1995), pp. 929-945. MR**96g:20013****17.**W. FEIT,*The Representation Theory of Finite Groups*, North-Holland, 1982. MR**83g:20001****18.**J. HAEFNER, Graded equivalence theory with applications,*J. Algebra***172**(1995), pp. 661-670. MR**96f:16052****19.**Y. MIYASHITA, On Galois extensions and crossed products,*J. Fac. Sci. Hokkaido Univ. Ser. I***21**(1970), pp. 661-670. MR**42:6046****20.**C. NSTSESCU AND F. VAN OYSTAEYEN,*Graded Ring Theory*, North-Holland, 1982. MR**84i:16002**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
20C20,
20C25

Retrieve articles in all journals with MSC (1991): 20C20, 20C25

Additional Information

**S. J. Witherspoon**

Affiliation:
Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3

Address at time of publication:
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Email:
sjw@math.toronto.edu, sjw@math.wisc.edu

DOI:
https://doi.org/10.1090/S0002-9939-99-05224-7

Received by editor(s):
April 20, 1998

Published electronically:
July 8, 1999

Additional Notes:
Research supported in part by NSERC grant # OGP0170281.

Communicated by:
Ronald M. Solomon

Article copyright:
© Copyright 1999
American Mathematical Society