Universal -lattices of minimal rank

Author:
Byeong-Kweon Oh

Journal:
Proc. Amer. Math. Soc. **128** (2000), 683-689

MSC (1991):
Primary 11E12, 11H06

DOI:
https://doi.org/10.1090/S0002-9939-99-05254-5

Published electronically:
July 6, 1999

MathSciNet review:
1654105

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the minimal rank of -universal -lattices, by which we mean positive definite -lattices which represent all positive -lattices of rank . It is a well known fact that for . In this paper, we determine and find all -universal lattices of rank for .

**[1]**E. Bannai,*Positive definite unimodular lattices with trivial automorphism groups*, Ohio State Univ., Thesis, 1988.**[2]**J. H. Conway and N. J. A. Sloane,*Sphere packings, lattices and groups*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR**920369****[3]**J. H. Conway and N. J. A. Sloane,*Low-dimensional lattices. I. Quadratic forms of small determinant*, Proc. Roy. Soc. London Ser. A**418**(1988), no. 1854, 17–41. MR**953276****[4]**J. H. Conway and N. J. A. Sloane,*Low-dimensional lattices. V. Integral coordinates for integral lattices*, Proc. Roy. Soc. London Ser. A**426**(1989), no. 1871, 211–232. MR**1030461****[5]**J.H. Conway, W. Schneeberger,*A -theorem for universal quadratic forms*, to appear.**[6]**B.M. Kim, M-H. Kim, S. Raghavan,*-universal positive definite integral quinary diagonal quadratic forms*, Ramanujan J.**1**(1997), 333-337. CMP**98:10****[7]**B.M. Kim, M-H. Kim, B-K. Oh,*-universal positive definite integral quinary quadratic forms*, Preprint.**[8]**Myung-Hwan Kim and Byeong-Kweon Oh,*Representations of positive definite senary integral quadratic forms by a sum of squares*, J. Number Theory**63**(1997), no. 1, 89–100. MR**1438651**, https://doi.org/10.1006/jnth.1997.2069**[9]**Myung-Hwan Kim and Byeong-Kweon Oh,*A lower bound for the number of squares whose sum represents integral quadratic forms*, J. Korean Math. Soc.**33**(1996), no. 3, 651–655. MR**1419759****[10]**C. Ko,*On the representation of a sum of squares of linear forms*, Quart. J. Math. Oxford**8**(1937), 81-98.**[11]**-,*On the decomposition of quadratic forms in six variables*, Acta Arith.**3**(1939), 64-78.**[12]**J.L. Lagrange, Oeuvres**3**(1869), 189-201.**[13]**O. T. O’Meara,*The integral representations of quadratic forms over local fields*, Amer. J. Math.**80**(1958), 843–878. MR**0098064**, https://doi.org/10.2307/2372837**[14]**-,*Introduction to quadratic forms*, Springer-Verlag, 1973.**[15]**L.J. Mordell,*A new Waring's problem with squares of linear forms*, Quart. J. Math. Oxford**1**(1930), 276-288.**[16]**S. Ramanujan,*On the expression of a number in the form*, Proc Cambridge Phil. Soc.**19**(1917), 11-21.**[17]**W. Plesken,*Additively indecomposable positive integral quadratic forms*, J. Number Theory**47**(1994), no. 3, 273–283. MR**1278399**, https://doi.org/10.1006/jnth.1994.1037**[18]**G. L. Watson,*The class-number of a positive quadratic form*, Proc. London Math. Soc. (3)**13**(1963), 549–576. MR**0150104**, https://doi.org/10.1112/plms/s3-13.1.549**[19]**G. L. Watson,*One-class genera of positive quadratic forms in at least five variables*, Acta Arith.**26**(1974/75), no. 3, 309–327. MR**0379369****[20]**G. L. Watson,*One-class genera of positive quadratic forms in nine and ten variables*, Mathematika**25**(1978), no. 1, 57–67. MR**0491499**, https://doi.org/10.1112/S0025579300009268**[21]**M.F. Willerding,*Determination of all classes of (positive) quaternary quadratic forms which represent all positive integers*, Bull. Amer. Math. Soc.**54**(1948), 334-337. MR**9:571e**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
11E12,
11H06

Retrieve articles in all journals with MSC (1991): 11E12, 11H06

Additional Information

**Byeong-Kweon Oh**

Email:
oandhan@math.snu.ac.kr

DOI:
https://doi.org/10.1090/S0002-9939-99-05254-5

Keywords:
$n$-universal lattice,
$U_{\mathbb{Z}}(n)$,
root lattice,
additively indecomposable

Received by editor(s):
April 27, 1998

Published electronically:
July 6, 1999

Additional Notes:
The author was partially supported by GARC and BSRI-98-1414

Communicated by:
David E. Rohrlich

Article copyright:
© Copyright 1999
American Mathematical Society