Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On an elementary approach
to the fractional Hardy inequality


Authors: Natan Krugljak, Lech Maligranda and Lars Erik Persson
Journal: Proc. Amer. Math. Soc. 128 (2000), 727-734
MSC (1991): Primary 26D15; Secondary 46E30
DOI: https://doi.org/10.1090/S0002-9939-99-05420-9
Published electronically: September 9, 1999
MathSciNet review: 1676324
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $H$ be the usual Hardy operator, i.e., $Hu(t)=\frac{1}{t}\int _0^tu(s)\,ds$. We prove that the operator $K=I-H$ is bounded and has a bounded inverse on the weighted spaces $L_p(t^{-\alpha},dt/t)$ for $\alpha>-1$ and $\alpha\not=0$. Moreover, by using these inequalities we derive a somewhat generalized form of some well-known fractional Hardy type inequalities and also of a result due to Bennett-DeVore-Sharpley, where the usual Lorentz $L_{p,q}$ norm is replaced by an equivalent expression. Examples show that the restrictions in the theorems are essential.


References [Enhancements On Off] (What's this?)

  • 1. R. Adams, N. Aronszajn, and K. T. Smith, Theory of Bessel potentials. II, Ann. Inst. Fourier (Grenoble) 17 (1967), no. fasc. 2, 1–135 (1968). MR 0228702
  • 2. Colin Bennett, Ronald A. DeVore, and Robert Sharpley, Weak-𝐿^{∞} and BMO, Ann. of Math. (2) 113 (1981), no. 3, 601–611. MR 621018, https://doi.org/10.2307/2006999
  • 3. Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
  • 4. V. I. Burenkov and W. D. Evans, Weighted Hardy-type inequalities for differences and the extension problem for spaces with generalized smoothness, J. London Math. Soc. (2) 57 (1998), no. 1, 209–230. MR 1624754, https://doi.org/10.1112/S0024610798005626
  • 5. P. Grisvard, Espaces intermédiaires entre espaces de Sobolev avec poids, Ann. Scuola Norm. Sup. Pisa 17 (1963), 255-296.
  • 6. H. P. Heinig, A. Kufner and L. E. Persson, On some fractional order Hardy inequalities, J. Inequal. Appl. 1 (1997), 25-46.
  • 7. N. Krugljak, L. Maligranda and L. E. Persson, The failure of the Hardy inequality and interpolation of intersections, Arkiv Mat., to appear.
  • 8. Alois Kufner and Hans Triebel, Generalizations of Hardy’s inequality, Confer. Sem. Mat. Univ. Bari 156 (1978), 21 pp. (1979). MR 541051
  • 9. J. L. Lions and E. Magenes, Problémes aux Limites Non Homogénes et Applications I, Springer-Verlag, Berlin-New York, 1972.
  • 10. J. L. Lions and E. Magenes, Problémes aux limites non homogénes IV, Scuola Norm. Sup. Pisa 15 (1961), 311-326.
  • 11. Yoram Sagher, An application of the approximation functional in interpolation theory, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 802–809. MR 730110
    Mario Milman and Yoram Sagher, An interpolation theorem, Ark. Mat. 22 (1984), no. 1, 33–38. MR 735876, https://doi.org/10.1007/BF02384369
  • 12. B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR 1069756
  • 13. G. N. Yakovlev, Boundary properties of functions from the space $W_p^{(1)}$ on domains with angular points, Dokl. Akad. Nauk. SSSR 140 (1961), 73-76. (Russian)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 26D15, 46E30

Retrieve articles in all journals with MSC (1991): 26D15, 46E30


Additional Information

Natan Krugljak
Affiliation: Department of Mathematics, Yaroslavl State University, Sovetskaya 14, 150 000 Yaroslavl, Russia
Email: natan@univ.uniyar.ac.ru

Lech Maligranda
Affiliation: Department of Mathematics, LuleåUniversity of Technology, S-971 87 Luleå, Sweden
Email: lech@sm.luth.se

Lars Erik Persson
Email: larserik@sm.luth.se

DOI: https://doi.org/10.1090/S0002-9939-99-05420-9
Keywords: Inequalities, Hardy inequality, Grisvard inequality, Lorentz spaces
Received by editor(s): April 15, 1998
Published electronically: September 9, 1999
Communicated by: Frederick W. Gehring
Article copyright: © Copyright 1999 American Mathematical Society