Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

When is a right orderable group
locally indicable?


Authors: Patrizia Longobardi, Mercede Maj and Akbar Rhemtulla
Journal: Proc. Amer. Math. Soc. 128 (2000), 637-641
MSC (1991): Primary 20F19; Secondary 06F15, 20F60
DOI: https://doi.org/10.1090/S0002-9939-99-05534-3
Published electronically: October 25, 1999
MathSciNet review: 1694872
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If a group $G$ has an ascending series $ 1 = G_{0} \leq G_{1} \leq \dots \leq G_{\rho } = G$ of subgroups such that for each ordinal $\alpha ,\ G_{\alpha }\vartriangleleft G$, and $G_{\alpha + 1}/G_{\alpha }$ has no non-abelian free subsemigroup, then $G$ is right orderable if and only if it is locally indicable. In particular if $G$ is a radical-by-periodic group, then it is right orderable if and only if it is locally indicable.


References [Enhancements On Off] (What's this?)

  • [1] G.M.Bergman, Right-orderable groups that are not locally indicable, Pac. J. Math. 147 (1991), 243-248. MR 92e:20030
  • [2] R.G.Burns and V.W.Hale, A note on group rings of certain torsion-free groups, Can. Math. Bull. 15 (1972), 441-445. MR 46:9149
  • [3] I.M.Chiswell and P.H.Kropholler, Soluble right orderable groups are locally indicable, Can. Math. Bull. 36 (1993), 22-29. MR 93j:20088
  • [4] P.M. Cohn, Groups of order automorphisms of ordered sets, Mathematika 4 (1957), 41-50. MR 19:940e
  • [5] P.F. Conrad, Right-ordered groups, Mich. Math. J. 6 (1959), 267-275. MR 21:5684
  • [6] V.M. Kopitov and N. Ya. Medvedev, Right Ordered Groups, Siberian School of Algebra and Logic, Plenum Publishing Corporation, New York, 1996.
  • [7] P. Longobardi, M. Maj and A. H. Rhemtulla, Groups with no free subsemigroups, Trans. Amer. Math. Soc. 347 (1995), 1419-1427. MR 95g:20043
  • [8] A. Yu. Ol'shanski and A. Storozhev, A group variety defined by a semigroup law, J. Austral. Math. Soc. (Series A) 60 (1996), 255-259. MR 97b:20033
  • [9] A. H. Rhemtulla, Polycyclic right ordered groups, Algebra, Carbondale 1980, Lecture Notes in Mathematics 848 (R.K.Amayo, ed.), Springer Berlin, 1981, pp. 230-234. MR 82i:06025
  • [10] V.M. Tararin, On Radically right-ordered groups, Sib. Mat. Zh. 32 (1991), 203-204.
  • [11] M.I. Zaitseva, Right-ordered groups, Uchen. Zap. Shuisk. Gos. Ped. Inst. 6 (1958), 215-226.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20F19, 06F15, 20F60

Retrieve articles in all journals with MSC (1991): 20F19, 06F15, 20F60


Additional Information

Patrizia Longobardi
Affiliation: Dipartimento di Matematica e Applicazioni “R. Caccioppoli", via Cintia, Monte S. Angelo, 80126, Napoli, Italy
Email: longobar@matna2.dma.unina.it

Mercede Maj
Affiliation: Dipartimento di Matematica e Informatica, via Salvator Allende, 84081 Baronissi (Salerno), Italy
Email: maj@matna2.dma.unina.it

Akbar Rhemtulla
Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: akbar@malindi.math.ualberta.ca

DOI: https://doi.org/10.1090/S0002-9939-99-05534-3
Received by editor(s): March 15, 1998
Published electronically: October 25, 1999
Additional Notes: The third author wishes to thank NSERC for partial financial support.
Communicated by: Ronald M. Solomon
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society