ON p-HYPONORMAL OPERATORS

EUNGIL KO

(Communicated by David R. Larson)

Abstract. In this paper we show that p-hyponormal operators with $0 \not\in \sigma(|T|^\frac{1}{2})$ are subscalar. As a corollary, we get that such operators with rich spectra have non-trivial invariant subspaces.

1. INTRODUCTION

Let H and K be separable complex Hilbert spaces and let $\mathcal{L}(H, K)$ denote the space of all bounded linear operators from H to K. If $H = K$, we write $\mathcal{L}(H)$ in place of $\mathcal{L}(H, K)$.

An operator $T \in \mathcal{L}(H)$ is said to be p-hyponormal, $0 < p \leq 1$, if $(T^*T)^p \geq (TT^*)^p$ where T^* is the adjoint of T. If $p = 1$, T is called hyponormal and if $p = \frac{1}{2}$, T is called semi-hyponormal. Semi-hyponormal operators were introduced by Xia (see [Xi]), and p-hyponormal operators for a general p, $0 < p < 1$, have been studied by Aluthge. Any p-hyponormal operators are q-hyponormal if $q \leq p$. But there are examples to show that the converse of the above statement is not true (see [Al]).

A bounded linear operator S on H is called scalar of order m if it has a spectral distribution of order m, i.e., if there is a continuous unital morphism of topological algebras

$$\Phi : C_0^m(C) \rightarrow \mathcal{L}(H)$$

such that $\Phi(z) = S$, where as usual z stands for the identity function on C and $C_0^m(C)$ stands for the space of compactly supported functions on C, continuously differentiable of order m, $0 \leq m \leq \infty$. An operator is subscalar if it is similar to the restriction of a scalar operator to a closed invariant subspace. We now define the weaker form of a subscalar operator. An operator $T \in \mathcal{L}(H)$ is quasi-subscalar if there exists a one-to-one $V \in \mathcal{L}(H, K)$ such that $VT = SV$ where S ($= \Phi(z)$ in the above definition) is a scalar operator.

This paper has been divided into three sections. Section 2 deals with some preliminary facts. In section 3, we show that p-hyponormal operators with the property $0 \not\in \sigma(|T|^\frac{1}{2})$ are subscalar. As a corollary, we get that such operators with rich spectra have non-trivial invariant subspaces.

Received by the editors April 22, 1998.

2000 Mathematics Subject Classification. Primary 47B20, 47A15.

Key words and phrases. p-hyponormal, subscalar operators, invariant subspaces.

The author is supported by the MOST through National R & D Program (97-N6-01-01-A-5) for Women’s Universities.

©1999 American Mathematical Society
Let $du(z)$, or simply $d\mu$, denote the planar Lebesgue measure. Let H be a complex separable Hilbert space, and let D be a bounded open disc in \mathbb{C}. We shall denote by $L^2(D, H)$ the Hilbert space of measurable functions $f : D \rightarrow H$, such that
\[
\|f\|_{2,D} = \left(\int_D \|f(z)\|^2 d\mu(z) \right)^{\frac{1}{2}} < \infty.
\]

The space of functions $f \in L^2(D, H)$ which are analytic functions in D (i.e., $\bar{\partial}f = 0$) is defined by
\[
A^2(D, H) = L^2(D, H) \cap \mathcal{O}(D, H)
\]
where $\mathcal{O}(D, H)$ denotes the Fréchet space of H-valued analytic functions on D with respect to uniform topology. $A^2(D, H)$ is called the Bergman space for D. Note that $A^2(D, H)$ is a Hilbert space. The operator $T - z$ on the space $\mathcal{O}(D, H)$ has property $\langle \beta \rangle$, which means by definition that $T - z$ is one-to-one and has closed range for every disc D.

Let us define now a Sobolev type space, called $W^2(D, H)$ where D is a bounded disc in \mathbb{C}. $W^2(D, H)$ will be the space of those functions $f \in L^2(D, H)$ whose derivatives $\bar{\partial}f, \partial f$ in the sense of distributions still belong to $L^2(D, H)$. Endowed with the norm $\|f\|_{W^2}^2 = \sum_{i=0}^2 \|\partial^i f\|_{2,D}^2$, $W^2(D, H)$ becomes a Hilbert space contained continuously in $L^2(D, H)$.

Now for $f \in C_0^2(\mathbb{C})$, let M_f denote the operator on $W^2(D, H)$ given by multiplication by f. This has a spectral distribution of order 2, defined by the functional calculus
\[
\Phi_M : C_0^2(\mathbb{C}) \rightarrow \mathcal{L}(W^2(D, H)), \quad \Phi_M(f) = M_f.
\]
Therefore M_z is a scalar operator of order 2. In fact, it can be shown [Pu] that M_z is subnormal.

3. Subscalarity

This section deals with the characterization for some p-hyponormal operators. Recall that an operator $T \in \mathcal{L}(H)$ is said to be p-hyponormal, $0 < p \leq 1$, if $(T^*T)^p \geq (TT^*)^p$ where T^* is the adjoint of T.

We need the following lemmas to give a proof of the main theorem.

Lemma 1 ([Xi], Lemma 2.1). Let $T = U|T|_r$ be the polar decomposition of T, $Q = |T|_r - |T|_l$, $z = re^{i\theta}$, $0 < \rho$, and $|e^{i\theta}| = 1$ where $|T|_r = (T^*T)^{\frac{1}{2}}$ and $|T|_l = (TT^*)^{\frac{1}{2}}$. Then
\[
\|(T - z)f\|_{2,D}^2 = \|(|T|_r - \rho)f\|_{2,D}^2 + \rho\|T|_r^2(U - e^{i\theta})^*f\|_{2,D} + \rho(Qf, f)
\]
for all $f \in L^2(D, H)$.

For reference, we quote Lemma 2 from [Pu].

Lemma 2 ([Pu], Proposition 2.1). For every bounded disk D in \mathbb{C} there is a constant C_D, such that for an arbitrary operator $T \in \mathcal{L}(H)$ and $f \in W^2(D, H)$ we have
\[
\|(I - P)f\|_{2,D} \leq C_D\left(\|(T - z)^*\bar{\partial}f\|_{2,D} + \|(T - z)\bar{\partial}^2 f\|_{2,D}\right)
\]
where P denotes the orthogonal projection of $L^2(D, H)$ onto the Bergman space $A^2(D, H)$.

For p-hyponormal operator $T = U|T|$, Aluthge ([Al]) introduced the operator $\tilde{T} = |T|^{1/2}U|T|^{1/2}$ and showed very interesting results on \tilde{T}.

Lemma 3 ([Al]). Let $T = U|T|$ be a p-hyponormal operator, $0 < p < 1$, and U unitary. Then the operator $\tilde{T} = |T|^{1/2}U|T|^{1/2}$ is hyponormal if $\frac{1}{2} < p < 1$, and $(p + \frac{1}{2})$-hyponormal if $0 < p < \frac{1}{2}$.

Lemma 4. Let $T = U|T|$ be semi-hyponormal and let U be unitary. Let D be a bounded disk which contains $\sigma(T)$. Then the map $V : H \to H(D)$ defined by $Vh = 1 \otimes h (\equiv 1 \otimes h + (T - z)W^2(D, H))$ is one-to-one and has closed range, where $1 \otimes h$ denotes the constant function sending any $z \in D$ to h.

Proof. Let $h_n \in H$ and $f_n \in W^2(D, H)$ be sequences such that
\begin{equation}
\lim_{n \to \infty} \|(T - z)f_n + 1 \otimes h_n\|_{W^2} = 0.
\end{equation}
Then by the definition of the norm of Sobolev space (1) implies
\begin{equation}
\lim_{n \to \infty} \|(T - z)\partial^i f_n\|_{2,D} = 0
\end{equation}
for $i = 1, 2$. Since T is a semi-hyponormal operator, Lemma 1 and equation (2) imply
\begin{equation}
\begin{cases}
\lim_{n \to \infty} \|(T|_{r} - \rho)\partial^i f_n\|_{2,D} = 0, \\
\lim_{n \to \infty} \rho\|T^{1/2}(U - e^{i\theta})^i\partial^i f_n\|_{2,D} = 0, \\
\lim_{n \to \infty} \rho(Q\partial^i f_n, \partial^i f_n) = 0.
\end{cases}
\end{equation}
We note that for $i = 1, 2$
\begin{equation}
(T - z)^*\partial^i f_n = \|T\|^{1/2}(U - e^{i\theta})^i\partial^i f_n
\end{equation}
\begin{equation*}
+ e^{-i\theta}([T|_{r} - \rho]\partial^i f_n).
\end{equation*}
By equations (3) and (4), we get
\begin{equation}
\lim_{n \to \infty} \|(T - z)^*\partial^i f_n\|_{2,D} = 0.
\end{equation}
 Lemma 2 and equation (5) imply
\begin{equation}
\lim_{n \to \infty} \|(I - P)f_n\|_{2,D} = 0,
\end{equation}
where P denotes the orthogonal projection of $L^2(D, H)$ onto $A^2(D, H)$. Then by
\begin{equation}
\lim_{n \to \infty} \|(T - z)Pf_n + 1 \otimes h_n\|_{2,D} = 0.
\end{equation}
Let Γ be a curve in D surrounding $\sigma(T)$. Then for $z \in \Gamma$
\begin{equation}
\lim_{n \to \infty} \|Pf_n(z) + (T - z)^{-1}(1 \otimes h_n)\| = 0
\end{equation}
uniformly. Hence
\begin{equation}
\lim_{n \to \infty} \frac{1}{2\pi i} \int_{\Gamma} Pf_n(z)dz + h_n = 0.
\end{equation}
But by Cauchy’s theorem,
\begin{equation*}
\int_{\Gamma} Pf_n(z)dz = 0.
\end{equation*}
Hence $\lim_{n \to \infty} h_n = 0$. Thus V is one-to-one and has closed range. □
Proposition 5. Let $T = U|T|_r$ be a p-hyponormal operator with the property $0 \notin \sigma(|T|^p_r)$, $0 < p < 1$, and U unitary. Let D be a bounded disk which contains $\sigma(T)$. Then the map $V : H \to H(D)$ defined by $V h = 1 \otimes h (\equiv 1 \otimes h + (T - z)W^2(D, H))$ is one-to-one and has closed range, where $1 \otimes h$ denotes the constant function sending any $z \in D$ to h.

Proof. Let $h_n \in H$ and $f_n \in W^2(D, H)$ be sequences such that

(7) $\lim_{n \to \infty} \|(T - z)f_n + 1 \otimes h_n\|_{W^2} = 0.$

Then equation (7) implies

(8) $\lim_{n \to \infty} \|(T - z)\partial^f f_n\|_{2, D} = 0$

for $i = 1, 2$.

(a) If $\frac{1}{2} \leq p < 1$, then T is semi-hyponormal. Therefore, Proposition 5 follows from Lemma 4.

(b) Let $0 < p < \frac{1}{2}$. Since $T = U|T|_r$,

$$\lim_{n \to \infty} \|\partial^f(T|_r^\frac{1}{2} - z)\partial^f f_n\|_{2, D} = 0.$$

Since $\tilde{T} = |T|^\frac{1}{2} U|T|_r^\frac{1}{2}$, we have

(9) $\lim_{n \to \infty} \|(\tilde{T} - z)\partial^f(|T|^\frac{1}{2} f_n)\|_{2, D} = 0.$

Since \tilde{T} is $(p + \frac{1}{2})$-hyponormal by Lemma 3, \tilde{T} is semi-hyponormal. Let $T = W|\tilde{T}|_r$ be the polar decomposition. Lemma 1 and equation (9) imply

(10) $\begin{cases}
\lim_{n \to \infty} \|(|\tilde{T}|_r - \rho)\partial^f(|T|^\frac{1}{2} f_n)\|_{2, D} = 0, \\
\lim_{n \to \infty} \rho\|\partial^f(|T|_r^\frac{1}{2} (W - e^{i\theta})^*\partial^f(|T|^\frac{1}{2} f_n))\|_{2, D} = 0, \\
\lim_{n \to \infty} \rho(Q\partial^f(|T|^\frac{1}{2} f_n), \partial^f(|T|^\frac{1}{2} f_n)) = 0.
\end{cases}$

Now we note that for $i = 1, 2$

$$((\tilde{T} - z)^*\partial^f(|T|^\frac{1}{2} f_n) = |\tilde{T}|_r^\frac{1}{2} |\tilde{T}|_r^\frac{1}{2} (W - e^{i\theta})^*\partial^f(|T|^\frac{1}{2} f_n)|$$

$$+ e^{-i\theta}((|\tilde{T}|_r - \rho)\partial^f(|T|^\frac{1}{2} f_n)).$$

By (10) and (11), we get

(12) $\lim_{n \to \infty} \|(|\tilde{T} - z)^*\partial^f(|T|^\frac{1}{2} f_n)\|_{2, D} = 0.$

Lemma 2 and equation (12) imply

(13) $\lim_{n \to \infty} \|(1 - P)|T|^\frac{1}{2} f_n\|_{2, D} = 0.$

Since $|T|^\frac{1}{2} (T - z) = (\tilde{T} - z)|T|^\frac{1}{2}$ and $0 \notin \sigma(|T|^\frac{1}{2})$, it follows from (7) that $\sigma(T) = \sigma(\tilde{T})$ and

(14) $\lim_{n \to \infty} \|(|\tilde{T} - z)|T|^\frac{1}{2} f_n + |T|^\frac{1}{2} (1 \otimes h_n)\|_{2, D} = 0.$

By (13) and (14), we have

$$\lim_{n \to \infty} \|(|\tilde{T} - z)P(|T|^\frac{1}{2} f_n) + |T|^\frac{1}{2} (1 \otimes h_n)\|_{2, D} = 0.$$
Let Γ be a curve in D surrounding $\sigma(T) = \sigma(\tilde{T})$. Then for $z \in \Gamma$
\[
\lim_{n \to \infty} \|P([T]^{\frac{1}{2}} f_n(z)) + (\tilde{T} - z)^{-1}([T]^{\frac{1}{2}} (1 \otimes h_n))\| = 0
\]
uniformly. Hence
\[
\lim_{n \to \infty} \frac{1}{2\pi i} \int_{\Gamma} P([T]^{\frac{1}{2}} f_n(z))dz + |T|^{\frac{1}{2}} h_n = 0.
\]
But by Cauchy’s theorem,
\[
\frac{1}{2\pi i} \int_{\Gamma} P([T]^{\frac{1}{2}} f_n(z))dz = 0.
\]
Therefore $\lim_{n \to \infty} |T|^{\frac{1}{2}} h_n = 0$. Since $0 \notin \sigma([T]^{\frac{1}{2}})$, $|T|^{\frac{1}{2}}$ is bounded below. Hence $\lim_{n \to \infty} h_n = 0$. \hfill \square

Theorem 6. Let $T = U|T|_r$ be p-hyponormal, $0 < p < 1$, and U unitary. If $0 \notin \sigma([T]^{\frac{1}{2}})$, then T is subscalar of order 2.

Proof. Consider an arbitrary bounded open disk D in the complex plane \mathbb{C} and the quotient space
\[H(D) = W^2(D, H)/(T - z)W^2(D, H)\]
endowed with the Hilbert space norm. The class of a vector f or an operator on $H(D)$ will be denoted by f, respectively A. Let M be the operator of multiplication by z on $W^2(D, H)$. As noted at the end of section 2, M is a scalar of order 2 and has a spectral distribution Φ. Let $S \equiv M$. Since $(T - z)W^2(D, H)$ is invariant under every operator Mf, $f \in C^2(D)$, we infer that S is a scalar operator of order 2 with spectral distribution Φ.

Consider the natural map $V : H \to H(D)$ defined by $V h = \tilde{h}$, for $h \in H$, where $1 \otimes h$ denotes the constant function identically equal to h. Note that $VT = SV$. In particular V is an invariant subspace for S. Since V is one-to-one and has closed range by Proposition 5, T is subscalar of order 2. \hfill \square

Corollary 7. Every invertible p-hyponormal operator is subscalar of order 2.

Proof. Assume $T = U|T|_r$ is an invertible p-hyponormal operator where U is unitary. Then $|T|_r$ is invertible. By [Ru, Theorem 12.33], $|T|^{\frac{1}{2}}$ is invertible. Therefore, $0 \notin \sigma([T]^{\frac{1}{2}})$. By Theorem 6, T is subscalar of order 2. \hfill \square

Corollary 8. Let $T = U|T|_r$ be a p-hyponormal operator with the property $0 \notin \sigma([T]^{\frac{1}{2}})$, $0 < p < 1$, and U unitary. If $\sigma(T)$ has interior in the plane, then T has a non-trivial invariant subspace.

Proof. The corollary follows from Theorem 6 and [Es]. \hfill \square

Corollary 9. Let T be as in Corollary 8. Then T has the property (β).

Proof. Since every subscalar operator has the property (β), the corollary follows from Theorem 6. \hfill \square

Recall that an X in $L(H, K)$ is called a quasi-affinity if it has trivial kernel and dense range. An operator A in $L(H)$ is said to be a quasi-affine transform of an operator T in $L(K)$ if there is a quasi-affinity X in $L(H, K)$ such that $XA = TX$ (notation: $A \sim T$).
Corollary 10. Let T be as in Corollary 8. If A is any operator such that $A \prec T$, then $\sigma(T) \subseteq \sigma(A)$.

Proof. This is clear from [Ko, Theorem 3.2] and Corollary 9.

Corollary 11. Under the same hypothesis as Corollary 10, $A \in \mathcal{L}(H)$ is quasi-subscalar.

Proof. Let $X \in \mathcal{L}(H, K)$ be a quasi-affinity such that $XA = TX$. Since V (in the construction of V and S) and X are one-to-one, VX is one-to-one. Therefore VX implements the quasi-subscalar properties. Thus A is quasi-subscalar.

References

Department of Mathematics, Ewha Women’s University, Seoul 120-750, Korea
E-mail address: eiko@mm.ewha.ac.kr