Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Gelfand-Kirillov conjecture
for quantum algebras


Author: Philippe Caldero
Journal: Proc. Amer. Math. Soc. 128 (2000), 943-951
MSC (1991): Primary 17Bxx
DOI: https://doi.org/10.1090/S0002-9939-99-05045-5
Published electronically: July 28, 1999
MathSciNet review: 1625709
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $q$ be a complex not a root of unity and $\mathfrak{g}$ be a semi-simple Lie $\mathbb{C}$-algebra. Let $U_{q}(\mathfrak{g})$ be the quantized enveloping algebra of Drinfeld and Jimbo, $U_{q}(\mathfrak{n}^-)\otimes U^{0}\otimes U_{q}(\mathfrak{n})$ be its triangular decomposition, and $\mathbb{C}_{q}[G]$ the associated quantum group. We describe explicitly $\operatorname{Fract} U_{q}(\mathfrak{n})$ and $\operatorname{Fract}\mathbb{C}_{q}[G]$ as a quantum Weyl field. We use for this a quantum analogue of the Taylor lemma.


References [Enhancements On Off] (What's this?)

  • [1] J. ALEV and F. DUMAS. Sur le corps des fractions de certaines algèbres quantiques, J. Algebra, 170, (1994), 229-265. MR 96c:16033
  • [2] N. BOURBAKI. Groupes et Algèbres de Lie, Chap. VI, Masson, Paris, 1981.
  • [3] N. BURROUGHS. Relating the approaches to quantized algebras and quantum groups, Comm. Math. Phys., 133, (1990), 91-117. MR 92c:17018
  • [4] P. CALDERO. Générateurs du centre de $U_{q}(sl(N+1))$, Bull. Sci. Math., 118, (1994), 177-208. MR 95k:17018
  • [5] P. CALDERO. Algèbres enveloppantes quantifiées, action adjointe et représentations, Thèse Université Paris VI, (1993).
  • [6] P. CALDERO. Sur le centre de $U_{q}({\mathfrak n})$, Beiträge zur Algebra und Geometrie, 35, (1994), 13-23. MR 95d:17009
  • [7] P. CALDERO. Etude des $q$-commutations dans l'algèbre $U_{q}({\mathfrak n})$, J. Algebra, 178, (1995), 444-457. MR 96k:17019
  • [8] P. CALDERO. Invariants in the enveloping algebra of a semi-simple Lie algebra for the adjoint action of a nilpotent Lie subalgebra, Comm. Math. Phys. 189 (1997), 699-707. CMP 98:04
  • [9] P. CALDERO. On the $q$-commutations in $U_{q}({\mathfrak n})$ at roots of one, to appear in J. Algebra.
  • [10] C. DE CONCINI and V. G. KAC. Representations of quantum groups at roots of 1, Colloque Dixmier, Progress in Math., 92, (1990), 471-506. MR 92g:17012
  • [11] V. G. DRINFELD. On almost cocommutative Hopf algebras, Leningrad Math. J., Vol. I, (1990), n$^{\circ }$ 2, 321-342. MR 91b:16046
  • [12] A. JOSEPH. A generalization of the Gelfand-Kirillov conjecture, Amer. J. Math., 99, (1977), 1151-1165. MR 57:391
  • [13] A. JOSEPH. A preparation theorem for the prime sprectrum of a semi-simple Lie algebra, 48, (1977), 241-289. MR 56:12082
  • [14] A. JOSEPH. Quantum groups and their primitive ideals, Springer-Verlag, 29, (1995). MR 96d:17015
  • [15] A. JOSEPH. Sur une conjecture de Feigin, C.R.Acad.Sci., 320, Serie I, (1995), 1441-1444. MR 96f:17020
  • [16] V. LAKSHMIBAI, N. RESHETIKHIN. Quantum flag and Schubert schemes, Contemp. Math., 134, (1992), 145-181. MR 94a:14055
  • [17] S.Z. LEVENDORSKII, Y.S. SOIBELMAN. Some applications of quantum Weyl group, J. Geom. Phys., 7, (1990), 241-254. MR 92g:17016
  • [18] G. LUSZTIG. Quantum groups at roots of 1, Geom. Ded., 35 (1990), 1-25. MR 91j:17018
  • [19] F. MILLET-FAUQUANT, Sur une algebre parabolique $P$ de $U_{q}(sl(N+1))$ et ses semi-invariants par l'action adjointe de $P$, preprint.
  • [20] Y. NOUAZÉ, P. GABRIEL. Idéaux premier de l'algèbre enveloppante d'une algèbre de Lie nilpotente, J. Algebra, 6, 77-99, (1967). MR 34:5889
  • [21] A.N. PANOV. The skew field of rational functions on $GL_{q}(n,K)$, Transl. from Funk. Anal., Vol. 28, n$^{0}$ 2, p. 75-77, 1994. CMP 94:14
  • [22] C.M. RINGEL. Hall algebras and quantum groups, Invent. Math., 101, (1990), 583-592. MR 91i:16024

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 17Bxx

Retrieve articles in all journals with MSC (1991): 17Bxx


Additional Information

Philippe Caldero
Affiliation: Institut Girard Desargues, UPRS-A-5028, Université Claude Bernard Lyon I, Bat 101, 69622 Villeurbanne Cedex, France
Email: caldero@desargues.univ-lyon1.fr

DOI: https://doi.org/10.1090/S0002-9939-99-05045-5
Keywords: Quantum groups, quantum Weyl fields, R-matrix
Received by editor(s): March 27, 1997
Received by editor(s) in revised form: May 15, 1998
Published electronically: July 28, 1999
Communicated by: Roe Goodman
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society