Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the Gelfand-Kirillov conjecture
for quantum algebras


Author: Philippe Caldero
Journal: Proc. Amer. Math. Soc. 128 (2000), 943-951
MSC (1991): Primary 17Bxx
Published electronically: July 28, 1999
MathSciNet review: 1625709
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $q$ be a complex not a root of unity and $\mathfrak{g}$ be a semi-simple Lie $\mathbb{C}$-algebra. Let $U_{q}(\mathfrak{g})$ be the quantized enveloping algebra of Drinfeld and Jimbo, $U_{q}(\mathfrak{n}^-)\otimes U^{0}\otimes U_{q}(\mathfrak{n})$ be its triangular decomposition, and $\mathbb{C}_{q}[G]$ the associated quantum group. We describe explicitly $\operatorname{Fract} U_{q}(\mathfrak{n})$ and $\operatorname{Fract}\mathbb{C}_{q}[G]$ as a quantum Weyl field. We use for this a quantum analogue of the Taylor lemma.


References [Enhancements On Off] (What's this?)

  • [1] J. Alev and F. Dumas, Sur le corps des fractions de certaines algèbres quantiques, J. Algebra 170 (1994), no. 1, 229–265 (French, with English summary). MR 1302839, 10.1006/jabr.1994.1336
  • [2] N. BOURBAKI. Groupes et Algèbres de Lie, Chap. VI, Masson, Paris, 1981.
  • [3] Nigel Burroughs, Relating the approaches to quantised algebras and quantum groups, Comm. Math. Phys. 133 (1990), no. 1, 91–117. MR 1071237
  • [4] Philippe Caldero, Générateurs du centre de 𝑈_{𝑞}(𝑠𝑙(𝑁+1)), Bull. Sci. Math. 118 (1994), no. 2, 177–208 (French, with English and French summaries). MR 1268527
  • [5] P. CALDERO. Algèbres enveloppantes quantifiées, action adjointe et représentations, Thèse Université Paris VI, (1993).
  • [6] Philippe Caldero, Sur le centre de 𝑈_{𝑞}(𝔫⁺), Beiträge Algebra Geom. 35 (1994), no. 1, 13–24 (French, with English and French summaries). Festschrift on the occasion of the 65th birthday of Otto Krötenheerdt. MR 1287192
  • [7] Philippe Caldero, Étude des 𝑞-commutations dans l’algèbre 𝑈_{𝑞}(𝔫⁺), J. Algebra 178 (1995), no. 2, 444–457 (French, with French summary). MR 1359896, 10.1006/jabr.1995.1359
  • [8] P. CALDERO. Invariants in the enveloping algebra of a semi-simple Lie algebra for the adjoint action of a nilpotent Lie subalgebra, Comm. Math. Phys. 189 (1997), 699-707. CMP 98:04
  • [9] P. CALDERO. On the $q$-commutations in $U_{q}({\mathfrak n})$ at roots of one, to appear in J. Algebra.
  • [10] Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of 1, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471–506. MR 1103601
  • [11] V. G. Drinfel′d, Almost cocommutative Hopf algebras, Algebra i Analiz 1 (1989), no. 2, 30–46 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 2, 321–342. MR 1025154
  • [12] A. Joseph, A generalization of the Gelfand-Kirillov conjecture, Amer. J. Math. 99 (1977), no. 6, 1151–1165. MR 0460397
  • [13] A. Joseph, A preparation theorem for the prime spectrum of a semisimple Lie algebra, J. Algebra 48 (1977), no. 2, 241–289. MR 0453829
  • [14] Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966
  • [15] Anthony Joseph, Sur une conjecture de Feigin, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 12, 1441–1444 (French, with English and French summaries). MR 1340049
  • [16] V. Lakshmibai and N. Reshetikhin, Quantum flag and Schubert schemes, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) Contemp. Math., vol. 134, Amer. Math. Soc., Providence, RI, 1992, pp. 145–181. MR 1187287, 10.1090/conm/134/1187287
  • [17] S. Z. Levendorskiĭ and Ya. S. Soĭbel′man, Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), no. 2, 241–254. MR 1120927, 10.1016/0393-0440(90)90013-S
  • [18] George Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, 10.1007/BF00147341
  • [19] F. MILLET-FAUQUANT, Sur une algebre parabolique $P$ de $U_{q}(sl(N+1))$ et ses semi-invariants par l'action adjointe de $P$, preprint.
  • [20] Y. Nouazé and P. Gabriel, Idéaux premiers de l’algèbre enveloppante d’une algèbre de Lie nilpotente, J. Algebra 6 (1967), 77–99 (French). MR 0206064
  • [21] A.N. PANOV. The skew field of rational functions on $GL_{q}(n,K)$, Transl. from Funk. Anal., Vol. 28, n$^{0}$ 2, p. 75-77, 1994. CMP 94:14
  • [22] Claus Michael Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), no. 3, 583–591. MR 1062796, 10.1007/BF01231516

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 17Bxx

Retrieve articles in all journals with MSC (1991): 17Bxx


Additional Information

Philippe Caldero
Affiliation: Institut Girard Desargues, UPRS-A-5028, Université Claude Bernard Lyon I, Bat 101, 69622 Villeurbanne Cedex, France
Email: caldero@desargues.univ-lyon1.fr

DOI: https://doi.org/10.1090/S0002-9939-99-05045-5
Keywords: Quantum groups, quantum Weyl fields, R-matrix
Received by editor(s): March 27, 1997
Received by editor(s) in revised form: May 15, 1998
Published electronically: July 28, 1999
Communicated by: Roe Goodman
Article copyright: © Copyright 2000 American Mathematical Society