Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On a polynomial inequality of E. J. Remez


Authors: D. Dryanov and Q. I. Rahman
Journal: Proc. Amer. Math. Soc. 128 (2000), 1063-1070
MSC (1991): Primary 30A10, 30C10, 41A17
DOI: https://doi.org/10.1090/S0002-9939-99-05092-3
Published electronically: July 27, 1999
MathSciNet review: 1636946
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a result which extends a well-known polynomial inequality of E. J. Remez and another one due to W. A. Markov.


References [Enhancements On Off] (What's this?)

  • 1. B. Bojanov, Elementary Proof of the Remez Inequality, Amer. Math. Monthly 100 (1993), pp. 1-99. CMP 93:11
  • 2. Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR 1367960
  • 3. G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971.
  • 4. Einar Hille, Analytic function theory. Vol. 1, Introduction to Higher Mathematics, Ginn and Company, Boston, 1959. MR 0107692
  • 5. V.A. Markov (W.A. Markov), Über polynôme die in einem gegebenem Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), pp. 1-99.
  • 6. G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. MR 1298187
  • 7. I. P. Natanson, Constructive function theory. Vol. I. Uniform approximation, Frederick Ungar Publishing Co., New York, 1964. Translated from the Russian by Alexis N. Obolensky. MR 0196340
    I. P. Natanson, Constructive function theory. Vol. II. Approximation in mean, Frederick Ungar Publishing Co., New York, 1965. Translated from the Russian by John R. Schulenberger. MR 0196341
    I. P. Natanson, Constructive function theory. Vol. III. Interpolation and approximation quadratures, Frederick Ungar Publishing Co., New York, 1965. Translated from the Russian by John R. Schulenberger. MR 0196342
  • 8. E.J. Remez, Sur une propriété des polynômes de Tchebycheff, Comm. Inst. Sci. Khar-kow 13 (1936), pp. 1-99.
  • 9. Theodore J. Rivlin, Chebyshev polynomials, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. From approximation theory to algebra and number theory. MR 1060735

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30A10, 30C10, 41A17

Retrieve articles in all journals with MSC (1991): 30A10, 30C10, 41A17


Additional Information

D. Dryanov
Affiliation: Department of Mathematics, University of Sofia, James Boucher 5, 1126 Sofia, Bulgaria
Email: dryanovd@fmi.uni-sofia.bg

Q. I. Rahman
Affiliation: Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Canada H3C 3J7
Email: rahmanqi@ere.umontreal.ca

DOI: https://doi.org/10.1090/S0002-9939-99-05092-3
Keywords: Polynomials, Markov's inequality, Remez inequality
Received by editor(s): May 12, 1997
Received by editor(s) in revised form: May 25, 1998
Published electronically: July 27, 1999
Additional Notes: The first author was partially supported by the Bulgarian Ministry of Education, Sciences, and Technology through Contract 513/95.
Communicated by: Frederick W. Gehring
Article copyright: © Copyright 2000 American Mathematical Society