Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



$C^2$-perturbations of Hopf's bifurcation points
and homoclinic tangencies

Authors: J. C. Martín and L. Mora
Journal: Proc. Amer. Math. Soc. 128 (2000), 1241-1245
MSC (1991): Primary 58F12, 58F13; Secondary 58F14, 58F15
Published electronically: August 3, 1999
MathSciNet review: 1637404
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that a diffeomorphism which has a Hopf's bifurcation point, can be $C^2$ perturbed around the bifurcation point in order to get a diffeomorphism which exhibits homoclinic tangencies. In the $C^3$ case this is not possible because of the typical unfolding of a Hopf's bifurcation point.

References [Enhancements On Off] (What's this?)

  • [Ct] Catsigeras, E.: Cascades of period doubling bifurcations in $n$ dimensions. Nonlinearity 9(1996),1061-1070. MR 97f:58082
  • [Ma1] Martín, J.C.: Bifurcations homocliniques et cascades de duplication de la période en dimension quelconque. Ph.D. Thesis,.I.M.P.A., 1992.
  • [Ma2] Martín, J.C.: Hopf bifurcations and homoclinic tangencies. To be published.
  • [Mo] Mora, L.: Birkhoff-Hénon attractors for dissipative perturbations of area-preserving twist maps. Ergod. Th. & Dynam. Sys. 14(1994)807-815. MR 95i:58123
  • [MV] Mora, L. & Viana, M.: The abundance of strange attractors. Acta mathematica. 171(1993), 1-71. MR 94k:58089
  • [N] Newhouse, S.: The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Publ. Math. I.H.E.S 50(1979),101-151. MR 82e:58067
  • [NPT] Newhouse, S., Palis, J. & Takens, F.: Bifurcations and stability of families of diffeomorphisms. Publ. Math. I.H.E.S 57(1983)5-72. MR 84g:58080
  • [PT] Palis, J. & Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. fractal Dimensions and Infinitely Many Attractors. Cambridge Univ. Press, Cambridge, 1993. MR 94h:58129
  • [Ro] Romero, N.: Persistence of homoclinic tangencies in higher dimensions. Ergod. Th. & Dynam. Syst. 15(1995),735-757. MR 96e:58118
  • [R] Ruelle, D.: Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press, 1989. MR 90f:58048
  • [S] Smale, S.: Diffeomorphisms with many periodic points. Diff. and Comb. Topology. Princeton Univ. Press (1965),63-80. MR 31:6244
  • [U] Ures, R.: On the approximation of Hénon -like attractors by homoclinic tangencies. Ergod. Th. & Dynam. Sys. 15(1995),1223-1229. MR 96k:58142
  • [V] Viana, M.: Strange attractors in higher dimensions. Boll. Braz. Math. Soc.24(1994),13-62. MR 94k:58093
  • [YA] York, J. & Alligood, K.T.: Cascades of period doubling bifurcations: a prerequisite for horshoes. Bull. A.M.S. (New Series) 9(1983),319-322. MR 85b:58089

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F12, 58F13, 58F14, 58F15

Retrieve articles in all journals with MSC (1991): 58F12, 58F13, 58F14, 58F15

Additional Information

J. C. Martín
Affiliation: Departamento de Matemática, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1086–A, Venezuela

L. Mora
Affiliation: Departamento de Matemática, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A, Venezuela

Received by editor(s): November 10, 1997
Received by editor(s) in revised form: June 4, 1998
Published electronically: August 3, 1999
Communicated by: Mary Rees
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society