BOUNDEDNESS OF INTEGRAL OPERATORS
ON GENERALIZED MORREY SPACES
AND ITS APPLICATION TO SCHRÖDINGER OPERATORS

KAZUHIRO KURATA, SEIICHI NISHIGAKI, AND SATOKO SUGANO

(Communicated by Christopher D. Sogge)

Abstract. In this paper, we study boundedness of integral operators on gen-
eralized Morrey spaces and its application to estimates in Morrey spaces for the
Schrödinger operator $L_2 = -\Delta + V(x) + W(x)$ with nonnegative $V \in (RH)_\infty$
(reverse Hölder class) and small perturbed potentials W.

1. Introduction

In this paper, we study boundedness of integral operators with the kernel of Riesz
type on generalized Morrey spaces (Theorems 2.1, 2.2) and its application to the
study of mapping properties of the Schrödinger operator $L_2 = -\Delta + V(x) + W(x)$
with nonnegative $V \in (RH)_\infty$ (reverse Hölder class) and small perturbed potentials
W (Theorems 1.2, 1.3, 3.1, 3.2). We say $V \in (RH)_\infty$ if there exists a constant C
such that

$$\sup_{y \in B(x,r)} |V(y)| \leq C \frac{1}{|B(x,r)|} \int_{B(x,r)} |V(y)| \, dy$$

for every $x \in \mathbb{R}^n$ and $r > 0$, where $B(x,r) = \{ y \in \mathbb{R}^n : |y - x| < r \}$. As a typical
example, for any polynomial $P(x)$ and $\alpha > 0$, $V(x) = |P(x)|^\alpha$ belongs to this class.
For $L_1 = -\Delta + V + \sum_{j=1}^n |\partial_j V|^{1/2}$, $V \neq 0$, we already know nice estimates for the
fundamental solution $\Gamma(x,y)$ for L_1 due to Z. Shen [Sh1]; for every $k > 0$ there exists
a constant C_k such that

$$|\Gamma(x,y)| \leq \frac{C_k}{(1 + m(x,V)|x - y|)k|x - y|^{\alpha-2}},$$

$$|\nabla_x \Gamma(x,y)| + |\nabla_y \Gamma(x,y)| \leq \frac{C_k}{(1 + m(x,V)|x - y|)k|x - y|^{\alpha-1}},$$

where $m(x,V)$ is defined by

$$\sup_{r > 0} \{ r^2 \frac{1}{|B(x,r)|} \int_{B(x,r)} V(y) \, dy \leq 1 \}.$$
us to obtain the boundedness of L_1^{-1}, the integral operator with the kernel $\Gamma(x,y)$, on various spaces. In particular, we can prove that there exists a constant C such that

$$|m(x, V)^2(L_1^{-1} f)(x)| + |m(x, V)\nabla L_1^{-1} f(x)| \leq CM(|f|)(x)$$

for $f \in L_c^\infty(\mathbb{R}^n)$, where $M(|f|)$ is the Hardy-Littlewood maximal function of f and $L_c^\infty(\mathbb{R}^n) = \{ f \in L^\infty(\mathbb{R}^n) : \text{supp} f \text{ is compact} \}$ (see [KS] and Lemma 3.1). The main purpose of this paper is to show estimates of L_2^{-1} (see Definition 1.2) for certain perturbed potentials W (not necessarily nonnegative) on various spaces. We should remark that, if we consider an example $W(x) = -\epsilon/|x|^2$, we cannot expect such nice estimates for the fundamental solution to L_2. Our method relies on the estimates for L_1 and a simple perturbation argument. To develop a perturbation theory, we consider integral operators T and S_M defined by

$$T f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n/s}} \, dy$$

and

$$S_M f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n/s}(1 + |x - y|)^M} \, dy$$

for some $s > 1$ and $M > 0$. Many authors studied the boundedness of T on various spaces, e.g., on L^p spaces, weighted L^p spaces, and classical Morrey spaces. Among them, we note the recent result due to Olsen, which covers all previous results, except for weighted L^p spaces (see, e.g., [Ad], [CF], [Ta]). We recall that a function f is said to belong to the classical Morrey space M_p^s, $1 \leq p < 1$, if

$$\|f\|_{M_p^s} = \sup_{Q \subset \mathbb{R}^n} |Q|^{1/r - 1/p} \left(\int_Q |f(x)|^p \, dx \right)^{1/p} < +\infty$$

holds, where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$. For a function $W(x)$, we denote by $W \cdot T$ the product of W and T, where W is the multiplication operator by $W(x)$. The following theorem is due to Olsen [Ol], although Olsen stated the estimate only in the three-dimensional case.

Theorem 1.1 (Ol). Let $n \geq 3$ and $1/v + 1/s = 1$. Assume $1 < p \leq r, p < u \leq v, 1/r + 1/s > 1$, and $W \in M_u^s$. Then there exists a constant C such that

$$\|W \cdot T f\|_{M_p^s} \leq C\|W\|_{M_s^u}\|f\|_{M_p^s}, \quad f \in M_p^s.$$

We assume that V satisfies the following conditions: there exists a positive constant m_0 such that

$$V(x) \geq 0, \quad V \in (RH)_{\infty}, \quad m(x, V) \geq m_0.$$

For example, $V(x) = |P(x)|^\alpha$ satisfies \([LS]\) for every polynomials $P(x)$ and $\alpha > 0$ (see \([SH1]\)).

Definition 1.1. For a Banach space $Y \subset L_p^{\text{loc}}(\mathbb{R}^n)$ for some $1 < p < +\infty$) we consider the Banach space \mathcal{X}_Y associated with Y:

$$\mathcal{X}_Y = \{ u \in Y; m(x, V)^2 u, m(x, V) \nabla u, \nabla^2 u \in Y \}$$

with its norm $\|u\|_{\mathcal{X}_Y} = \|m(x, V)^2 u\|_Y + \|m(x, V) \nabla u\|_Y + \|\nabla^2 u\|_Y$.

Let $L_1 = -\Delta + V$ and $L_2 = L_1 + W$. Now, we state the estimate in the classical Morrey spaces for L_2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 1.2. Assume $n \geq 3, 1 < p \leq r < n/2, p < u \leq n/2$, and (1.8) for V. Let $Y = M_p^r$ and suppose $W \in M_u^{n/2}$ and $\|W\|_{M_u^{n/2}}$ is sufficiently small. Then there exists a constant C such that
\[
\|W u\|_{M_p^r} + \|m(x, V)^2 u\|_{M_p^r} + \|m(x, V)\nabla u\|_{M_p^r} + \|\nabla^2 u\|_{M_p^r}
\leq C\|L_2 u\|_{M_p^r}, \quad u \in C_0^\infty(\mathbb{R}^n).
\]
Here C depends on $\|W\|_{M_u^{n/2}}$ and $L_1^{-1}\|Y \to \mathcal{X}_Y\$.

For the definition of $L_1^{-1}\|Y \to \mathcal{X}_Y$, see section 3.

Definition 1.2. (L_2^{-1}) Under the assumption that WL_1^{-1} is bounded on Y and W is small in the sense that $\|WL_1^{-1}\|_{Y \to Y} < 1$, we define the operator L_2^{-1} from Y to \mathcal{X}_Y by $L_2^{-1} = L_1^{-1}(1 + WL_1^{-1})^{-1}$. Note that, when L_1 is an isomorphism from \mathcal{X}_Y to Y, $u = L_2^{-1} f \in \mathcal{X}_Y$ represents a unique solution to $L_2 u = f$ for $f \in Y$.

Since we will see that L_1 gives an isomorphism from \mathcal{X} to Y for the case $Y = L^p(\mathbb{R}^n)$ with $1 < p < +\infty$, we have the following theorem.

Theorem 1.3. (1) Assume $n \geq 3, 1 < p < n/2, p < u \leq n/2$, and (1.8) for V. Suppose $W \in M_u^{n/2}$ and $\|W\|_{M_u^{n/2}}$ is sufficiently small. Then there exists a constant C such that
\[
\|WL_1^{-1} f\|_{L^p} + \|m(x, V)^2 L_2^{-1} f\|_{L^p} + \|m(x, V)\nabla L_2^{-1} f\|_{L^p} + \|\nabla^2 L_2^{-1} f\|_{L^p}
\leq C\|f\|_{L^p}, \quad f \in L^p.
\]
(2) Under the additional assumption $\|W\|_{1/2}^{1/2} \in M_u^n$ for some $v \leq n$, there exists a constant C such that
\[
\|WL_1^{-1} f\|_{L^p} \leq C\|f\|_{L^p}, \quad f \in L^p.
\]

Example 1.1. Let $W(x) = \epsilon/|x|^2$ with $|\epsilon| \leq \epsilon_0$ for sufficiently small $\epsilon_0 > 0$. Then $W \in M_u^{n/2}$ for every $u < n/2$ and $\|W\|_{M_u^{n/2}} \leq \epsilon_0 C$ for some constant C which depends only on n. Hence we can apply Theorem 1.2 and Theorem 1.3 for every $1 < p \leq r < n/2$ and $1 < p < n/2$, respectively. Note that W does not belong to any L^u spaces.

For a general weight function $\Phi(x, r) \geq 0$, the generalized Morrey space L_p^Φ with $1 \leq p < +\infty$ is defined as follows:
\[
L_p^\Phi = \{f \in L^p_\text{loc}(\mathbb{R}^n); \sup_{x \in \mathbb{R}^n, r > 0} \frac{1}{\Phi(x, r)} \int_{B(x, r)} |f(y)|^p dy \equiv \|f\|_{p, \Phi} < +\infty\}.
\]

In [11] and [12], the authors studied the boundedness of the Hardy-Littlewood maximal function and singular integral operators on those spaces under a certain conditions on Φ (2.1 and 2.2 in section 2). We should mention that for the restricted case $p/r \leq u/v$, the estimate in Theorem 1.1 has been proved in [18] and its proof is rather simple compared with the one in [11]. Since this type of estimate is useful even for the restricted case for our application, we shall generalize it to the generalized Morrey spaces in section 2 under a certain additional condition (2.3) on $\Phi(x, r)$ (Theorem 2.1). Furthermore, we improve the estimate in Theorem 2.1 for the integral operator S_M (Theorem 2.2). In section 3, we apply it to the Schrödinger operator and show a similar estimate as in Theorem 1.2 on the generalized Morrey...
space (Theorems 3.1, 3.2). The proof of Theorem 1.2 is also given in a similar way as in Theorem 3.1.

2. BOUNDEDNESS OF INTEGRAL OPERATORS ON GENERALIZED MORREY SPACES

In this section, we show boundedness of the integral operators T and S_M on generalized Morrey spaces. We assume that the weight function $\Phi(x, r)$ satisfies the following conditions: there exist a positive constant C and nonnegative constants λ, δ with $\lambda + \delta < n(1 - p/s')$ such that

\begin{equation}
C^{-1} \leq \frac{\Phi(x, t)}{\Phi(x, r)} \leq C \quad (r \leq t \leq 2r),
\end{equation}

\begin{equation}
\int_r^\infty \frac{\Phi(x, t)}{t^{n-(n/s')p}} \frac{dt}{t} \leq C_{p,n} (1 + r^\delta),
\end{equation}

\begin{equation}
\Phi(x, r) \leq Cr^\lambda(1 + r^\delta)
\end{equation}

for every $x \in \mathbb{R}^n$ and $r > 0$, where $s' = s/(s-1)$.

Example 2.1. It is easy to see that $\Phi(x, r) = r^\lambda \log(2 + r)$ with $0 \leq \lambda < n(1 - p/s')$ satisfies the conditions above for every $\delta > 0$. Note that L^p_Φ does not belong to any classical Morrey spaces.

We state our main results for boundedness of $W \cdot T$ on generalized Morrey spaces.

Theorem 2.1. Assume $n \geq 3, 1 < s, 1 < p < s'$, and (2.1) - (2.3) for $\Phi(x, r)$. Let $\lambda^* = n/(n - \lambda), (\lambda + \delta)^* = n/(n - (\lambda + \delta))$ and $W \in L^s_{\lambda^*} \cap L^{s^*}_{(\lambda+\delta)^*}$. Then there exists a constant C such that

\begin{equation}
\|W \cdot Tf\|_{p,\Phi} \leq C_{\lambda,\delta,\Phi} (\|W\|_{s'/\lambda^*}, \|W\|_{s^*/(\lambda+\delta)^*}) \|f\|_{p,\Phi}, \quad f \in L^\Phi_p.
\end{equation}

Remark 2.1. Note that, for the case $\Phi(x, t) = t^{n(1-p/r)}$ we have $L^p_\Phi = M_p$. Hence Theorem 2.1 in the case $\delta = 0$ is a generalization of [CF, Theorem 2].

For the integral operator S_M, we can improve the estimate in Theorem 2.1.

Theorem 2.2. Assume $n \geq 3, 1 < s, 1 < p < s'$, and (2.1) - (2.3) for $\Phi(x, r)$. Let $W \in L^s_\Phi$ and suppose $M \geq (\lambda + \delta)/p$. Then there exists a constant C such that

\begin{equation}
\|W \cdot S_M f\|_{p,\Phi} \leq C M \|W\|_{s^*/\lambda^*} \|f\|_{p,\Phi}, \quad f \in L^\Phi_p.
\end{equation}

In [Na, Theorem 3], without the assumption (2.3), Nakai proved a boundedness of T from L^p_Φ to $L^{q'/p}_q$, where $1/q = 1/p - 1/s'$ which is a generalization of [CF, Corollary, p. 277].

Theorem 2.3 ([Na]). Suppose $1 < p < s'$ and $\Phi(x, r)$ satisfies the conditions (2.1) and (2.2). Let $1/q = 1/p - 1/s'$. Then there exists a constant C such that

\begin{equation}
\|Tf\|_{q,\Phi^{s'/p}} \leq C \|f\|_{p,\Phi}.
\end{equation}

We note Hölder’s inequality on the generalized Morrey spaces.

Lemma 2.1. Let $\Phi_1(x, r)$ and $\Phi_2(x, r)$ be weight functions. Suppose $p, q, t \in (0, +\infty)$ satisfy $1/t = 1/p + 1/q$ and let $\Psi(x, r) = \Phi_1(x, r)^t \Phi_2(x, r)^{1/t}$. Then we have

\begin{equation}
\|fg\|_{t,\Psi} \leq \|f\|_{p,\Phi_1} \|g\|_{q,\Phi_2}, \quad f \in L^p_{\Phi_1}, \, g \in L^q_{\Phi_2}.
\end{equation}
Proof. For each \(x \in \mathbb{R}^n \) and \(r > 0 \), we have
\[
\left(\int_{B(x,r)} \left| f g \right|^t \, dy \right)^{1/t} \leq \left(\int_{B(x,r)} |f|^p \, dy \right)^{1/p} \left(\int_{B(x,r)} |g|^q \, dy \right)^{1/q}
\leq \|f\|_{p, \Phi_1(x,r)}|g|_{q, \Phi_2(x,r)}^{1/q}
= \|f\|_{p, \Phi} \|g\|_{q, \Phi_2(x,r)}^{1/q}.
\]
This implies the desired inequality. \(\square \)

We need the boundedness of \(W \cdot T \) on the same generalized Morrey space to apply a perturbation argument to the operator \(L_2 = L_1 + W \). From this point of view, \(W \) must belong to some \(L^q \) space if we apply Theorem 2.3.

Corollary 2.1. Suppose \(1 < p < s' \) and \(\Phi(x,r) \) satisfies the conditions (2.1) and (2.2). Let \(W \in L^q(\mathbb{R}^n) \). Then there exists a constant \(C \) such that
\[
\|W \cdot Tf\|_{p, \Phi} \leq C\|W\|_{L^q} \|f\|_{p, \Phi}.
\]

Proof. It is an easy consequence of Theorem 2.3 and Lemma 2.1. \(\square \)

Corollary 2.1 should be compared with Theorem 2.2 (or 2.1). The difference between Theorem 2.2 and Corollary 2.1 can be seen in Example 3.1, for example.

To prove Theorem 2.1 we need the following lemma.

Lemma 2.2 (Na). Under the assumptions (2.1) - (2.2), there exist positive constants \(C \) and \(\mu \) such that
\[
\int_C^\infty \frac{\Phi(x,t)}{t^{n(1-p/s')-\mu}} \, dt \leq C \frac{\Phi(x,r)}{r^{n(1-p/s')-\mu}}
\]
holds for every \(r > 0 \).

Proof of Theorem 2.1. We may assume \(f \in L^p_{\phi} \cap L^\infty \) without loss of generality in the proof. Actually, we show there exists a constant \(C \) which does not depend on \(f \) such that
\[
(2.6) \int_{B(y,r)} |W(x)(Tf)(x)|^p \, dy \leq C\Phi(y,r)(\|W\|_{s'/\lambda^*} + \|W\|_{s'/(\lambda+\delta)^*})^p \|f\|^p_{p, \Phi}
\]
for every \(y \in \mathbb{R}^n \) and \(r > 0 \). For general \(f \in L^p_{\phi} \), applying (2.6) to \(f_R(x) = \chi_{\{|x| \leq R\}} \chi_{\{|f(x)| \leq R\}}(x)\|f\|(x) \) which belongs to \(L^\infty_{c} \cap L^p_{\phi} \), we have
\[
(2.7) \int_{B(y,r)} |W(x)(Tf_R)(x)|^p \, dy \leq C\Phi(y,r)(\|W\|_{s'/\lambda^*} + \|W\|_{s'/(\lambda+\delta)^*})^p \|f\|^p_{p, \Phi}
\]
for every \(y \in \mathbb{R}^n \) and \(r > 0 \). Taking the limit \(R \to \infty \), by the monotone convergence theorem, we obtain (2.6) for general \(f \in L^p_{\phi} \) and complete the proof.

STEP 1: We follow the argument in [CF]. We write, for \(\epsilon > 0 \) which will be determined later,
\[
Tf(x) = \int_{\{|x-y| < \epsilon\}} \frac{|f(y)|}{|x-y|^{n/s}} \, dy + \int_{\{|x-y| \geq \epsilon\}} \frac{|f(y)|}{|x-y|^{n/s}} \, dy \equiv I_1 + I_2.
\]
We can estimate I_1 by
\begin{equation}
|I_1| \leq \sum_{k=-\infty}^{\infty} \int_{\{2^k \leq |x-y| < 2^{k+1}\}} \frac{|f(y)|}{|x-y|^{n/s}} \ dy \leq C \epsilon^{n(1-1/s)} M f(x)
\end{equation}
for some constant C. Now, we take σ to satisfy $n(1 - \frac{2}{p}) - \mu < \sigma < pn(\frac{1}{s} - \frac{1}{p'})$, where $\mu > 0$ is the constant in Lemma 2.2. Since $n/s = \sigma/p + \{-\sigma/p - n/s\}$, Hölder’s inequality yields
\begin{equation}
|I_2| \leq \left(\int_{\{|x-y| \geq \epsilon\}} \frac{|f(y)|^p}{|x-y|^\sigma} \ dy \right)^{1/p} \left(\int_{\{|x-y| \geq \epsilon\}} |x-y|^{(\sigma/p-n/s)p'} \ dy \right)^{1/p'} \equiv I_3 I_4.
\end{equation}
For I_3, we have by (2.11)
\begin{equation}
I_3 \leq \left(\sum_{k=0}^{+\infty} \int_{\{2^k \leq |x-y| < 2^{k+1}\}} \frac{|f(y)|^p}{(2^k \epsilon)^\sigma} \ dy \right)^{1/p} \leq \left(\sum_{k=0}^{+\infty} \frac{C \Phi(x, 2^k \epsilon)}{(2^k \epsilon)^\sigma} \right)^{1/p} \|f\|_{p, \Phi}.
\end{equation}
We obtain
\begin{equation}
\sum_{k=0}^{+\infty} \Phi(x, 2^k \epsilon) \leq \sum_{k=0}^{+\infty} \frac{(2^k \epsilon)^n (1/p' - 1) - \mu}{(2^k \epsilon)^\sigma} \frac{C \Phi(x, 2^k \epsilon)}{(2^k \epsilon)^{n(1/p'-1)}} \leq C \sum_{k=0}^{+\infty} \frac{(2^k \epsilon)^n (1/p' - 1) - \mu}{(2^k \epsilon)^\sigma} \int_{2^k \epsilon}^{2^{k+1} \epsilon} \Phi(x, t) \ dt \leq C \int_{\epsilon}^{2^k \epsilon} \Phi(x, t) \ dt \frac{dt}{t^{n(1/p'-1) - \mu - \sigma}} \leq C \frac{\Phi(x, \epsilon)}{\epsilon^\sigma}.
\end{equation}
for some constant C. Here, since $\sigma > n(1 - p/s' - \mu)$, we used $(2^k \epsilon)^n (1/p' - 1) - \mu - \sigma \leq 1$ for every $k \geq 0$. By Lemma 2.2, we can conclude
\[\sum_{k=0}^{+\infty} \Phi(x, 2^k \epsilon) \leq C \frac{\Phi(x, \epsilon)}{\epsilon^\sigma}. \]
On the other hand, it is easy to obtain
\begin{equation}
I_4 \leq C \epsilon^{n(1/p' - 1/s) + \sigma/p}.
\end{equation}
Hence, it follows that
\begin{equation}
I_2 \leq C \Phi(x, \epsilon)^{1/p} \epsilon^{n(1/p'-1/s)} \|f\|_{p, \Phi}.
\end{equation}
Therefore, we obtain that
\begin{equation}
(T f)(x) \leq C \left\{ \epsilon^{n(1-1/s)} M f(x) + \Phi(x, \epsilon)^{1/p} \epsilon^{n(1/p'-1/s)} \|f\|_{p, \Phi} \right\}
\end{equation}
holds for some constant C.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(Step 2): By the condition (2.3), we have
\[
(Tf)(x) \leq C \left\{ \epsilon^{n(1-1/s)} Mf(x) + (\epsilon^{\lambda/p} + \epsilon(\lambda+\delta)/p) \epsilon^{n(1-1/p-1/s)} \|f\|_{p, \Phi} \right\}.
\]
Let \(A = M(|f|)(x) \) and \(B = \|f\|_{p, \Phi} \). We consider two cases.

Case 1. For the case \(B/A \leq 1 \), i.e. \(\|f\|_{p, \Phi} \leq M(|f|)(x) \), we choose \(\epsilon = (B/A)^{p/(n-\lambda)} \).

Since \(\epsilon \leq 1 \), it follows that
\[
(Tf)(x) \leq C \left\{ \frac{B}{A} \epsilon^{n(1-\lambda/p)} A + \frac{B}{A} \epsilon^{n(\lambda+p(1-1/p-1/s))} B \right\}.
\]
\[
\leq CM(|f|)(x)^{1-p\lambda^*/s'} \|f\|_{p, \Phi}^{p\lambda^*/s'}.
\]

Case 2. For the case \(B/A \geq 1 \), i.e. \(\|f\|_{p, \Phi} \geq M(|f|)(x) \), we choose \(\epsilon = (B/A)^{p/(n-(\lambda+\delta))} \).

In this case, it follows in a similar way that
\[
(Tf)(x) \leq CM(|f|)(x)^{1-p(\lambda+\delta)^*/s'} \|f\|_{p, \Phi}^{p(\lambda+\delta)^*/s'}.
\]

Hence, we obtain

\[
(2.14)
(Tf)(x) \leq CM(|f|)(x)^{1-p\lambda^*/s'} \|f\|_{p, \Phi}^{p\lambda^*/s'} + CM(|f|)(x)^{1-p(\lambda+\delta)^*/s'} \|f\|_{p, \Phi}^{p(\lambda+\delta)^*/s'}
\]

\[
\equiv J_1(x) + J_2(x).
\]

Define \(a \in (1, \infty) \) by \(1/a = 1 - p\lambda^*/s' \). By using Hölder’s inequality, we have
\[
\left(\int_{B(y,r)} |W(x)J_1(x)|^p \, dx \right)^{1/p}
\]
\[
\leq C \left(\int_{B(y,r)} |Mf(x)|^{p/a} |W(x)|^p \, dx \right)^{1/p} \|f\|_{p, \Phi}^{1/a'}
\]
\[
\leq C \left(\int_{B(y,r)} |Mf(x)|^p \, dx \right)^{1/a p} \left(\int_{B(y,r)} |W(x)|^{s'/\lambda^*} \, dx \right)^{\lambda'/s'} \|f\|_{p, \Phi}^{1/a'}
\]
\[
\leq C \Phi(y, r)^{1/p} \|W\|_{s'/\lambda^*, \Phi} \|f\|_{p, \Phi}.
\]

In the last inequality we used the fact that \(\|Mf\|_{p, \Phi} \leq C\|f\|_{p, \Phi} \) holds under the assumptions (2.1) and (2.2) (see (2.3)). This implies
\[
\|WJ_1\|_{p, \Phi} \leq C\|W\|_{s'/\lambda^*, \Phi} \|f\|_{p, \Phi}.
\]

In a similar way we have
\[
\|WJ_2\|_{p, \Phi} \leq C\|W\|_{s'/(\lambda+\delta)^*, \Phi} \|f\|_{p, \Phi}.
\]

This complete the proof of Theorem 2.1 \(\square \)

Proof of Theorem 2.2. We modify the proof of Theorem 2.1 in the following. We can estimate \(I_2 \) by \(I_3 \) and \(I_4 \), where
\[
I_3' = \left(\int_{|x-y| \geq \epsilon} \frac{|f(y)|^p}{|x-y|^s (1 + |x-y|)^{Mp}} \, dy \right)^{1/p}.
\]
We can estimate I_3 in two different ways, namely $I_3 \leq I_3$ and
\begin{equation}
I_3 \leq \left(\sum_{k=0}^{\infty} \int_{|x-y| \leq 2^{k+1}} \frac{|f(y)|^p}{|x-y|^p} dy \right)^{1/p} \leq C \frac{\Phi(x,r)^{1/p}}{\epsilon^{M \epsilon n(1-1/p-1/s)}} \|f\|_{p,\Phi}.
\end{equation}
Therefore, we obtain
\begin{equation}
(Tf)(x) \leq C \epsilon^{n(1-1/s)} M(f)(x) + C \epsilon^{\lambda/p} \min(1+\epsilon^{\delta/p}, \frac{1+\epsilon^{\delta/p}}{\epsilon^{M}}) \epsilon^{n(1-1/p-1/s)} \|f\|_{p,\Phi} \\
\leq C \epsilon^{n(1-1/s)} M(f)(x) + C \epsilon^{n(1-1/p-1/s)} \|f\|_{p,\Phi}.
\end{equation}
Here we used the boundedness of $\epsilon^{\lambda/p} \min(1+\epsilon^{\delta/p}, \frac{1+\epsilon^{\delta/p}}{\epsilon^{M}})$ under the assumption $M \geq (\lambda + \delta)/p$. Thus, this yields
\begin{equation}
(Tf)(x) \leq C(Mf)(x)^{1-p'/s} \|f\|_{p,s'}^p,
\end{equation}
which completes the proof of Theorem 2.2.

3. Application to Schrödinger operators

We consider Schrödinger operators $L_1 = -\Delta + V(x)$ and $L_2 = L_1 + W(x)$ on $\mathbb{R}^n, n \geq 3$. We study estimates in Morrey spaces and boundedness of L_2^{-1} for certain small perturbed potentials W by using estimates for the fundamental solution for L_1^{-1}.

Lemma 3.1 (KS). Suppose $V(x) \geq 0$, $V \in (RH)_\infty$. Then there exist constants $C_j, j = 1, 2$, such that
\[|m(x,V) L_1^{-1} f(x)| \leq C_1 M(f)(x), |m(x,V) \nabla L_1^{-1} f(x)| \leq C_2 M(f)(x), \]
for $f \in L_c^\infty(\mathbb{R}^n)$.

Let $Y (\subset L^p_{loc}(\mathbb{R}^n)$ for some $1 < p < +\infty$) be a Banach space, and let X_Y be the Banach space associated with Y in Definition 1.1.

Corollary 3.1. (1) Suppose $V(x) \geq 0$, $V \in (RH)_\infty$ and that there exists a constant C such that $\|M(f)\|_Y + \|\nabla^2(-\Delta)^{-1} f\|_Y \leq C \|f\|_Y$ for $f \in Y \cap L_c^\infty$. Then there exists a constant C_1 such that
\[\|L_1^{-1} f\|_{X_Y} \leq C_1 \|f\|_Y, \quad f \in Y \cap L_c^\infty. \]

(2) Under the same assumptions, there exists a constant C_2 such that
\[\|u\|_{X_Y} \leq C_2 \|L_1 u\|_Y, \quad u \in C_0^\infty(\mathbb{R}^n). \]

Proof. Lemma 3.1 and the assumption yield
\[\|m(x,V) L_1^{-1} f\|_Y + \|m(x,V) \nabla L_1^{-1} f\|_Y + \|\Delta L_1^{-1} f\|_Y \leq C \|f\|_Y. \]
Since $\nabla^2 L_1^{-1} = \nabla^2(-\Delta)^{-1}(-\Delta)L_1^{-1}$, we obtain (1). Since $L_1 u = f \in L_c^\infty \cap Y$ for $u \in C_0^\infty(\mathbb{R}^n)$ and $u = L_1^{-1} f$, (2) is a consequence of (1).
We can show in the same way as in the proof of Theorem 2.1 that
\[\|m(x, V)^2 L_1^{-1} f\|_Y + \|m(x, V) \nabla L_1^{-1} f\|_Y \leq C \|f\|_Y \]
holds for \(f \in Y \). We denote by \(\|L_1^{-1}\|_{Y \rightarrow X_Y} \) the infimum of the constant \(C_2 \) in Corollary 3.1. Since it is known that the assumption in Corollary 3.1 holds for \(Y = L^p(\mathbb{R}^n) \), \(L^p(\mathbb{R}^n; \omega \, dx), 1 < p < +\infty \), with \(A_p \)-weight \(\omega \geq 0 \), the Morrey spaces \(M^p_r(1 < p \leq r < \infty) \), generalized Morrey spaces \(L^p_\mu(r < \infty) \) (see, e.g., [59], [12]), we can apply Corollary 3.1 to these Banach spaces \(Y \). Now we state our main result in this section.

Theorem 3.1. Assume \(n \geq 3, 1 < p < n/2, 0 < \lambda + \delta < n(1 - 2p/n) \), (1.8) for \(V \), and that \(\Phi(x, r) \) satisfies the conditions (2.1) - (2.3). Let \(Y = L^p_{\Phi, w} \) and \(W \in L^p_{\Phi, w} \). Suppose \(\|W\|_{n/2, \Phi, w} \) is sufficiently small. Then there exists a constant \(C \) such that
\[\|W u\|_Y + \|u\|_{X_Y} \leq C \|L_2 u\|_Y, \quad u \in C_0^\infty(\mathbb{R}^n). \]
Here \(C \) depends on \(\|W\|_{n/2, \Phi, w} \) and \(\|L_1^{-1}\|_{Y \rightarrow X_Y} \).

Proof. It is known that the fundamental solution \(\Gamma(x, y) \) for \(L_1 \) satisfies (1.2) and (1.3) and hence
\[0 \leq \Gamma(x, y) \leq \frac{C_M}{|x - y|^{n-2(1 + |x - y|)^M}} \]
for every \(M > 0 \) under the assumption (1.8) on \(V \). Thus \(W L_1^{-1} \) is a bounded operator on \(Y \) under the assumption by Theorem 2.2 with \(s = n/(n - 2) \) and hence \((1 + W L_1^{-1})^{-1} \) is also bounded on \(Y \) because of the smallness of \(\|W\|_{n/2, \Phi, w} \) and can be written as Neumann series. For \(u \in C_0^\infty(\mathbb{R}^n) \), \(L_2 u = f \) is equivalent to \(L_1 u = (1 + W L_1^{-1})^{-1} f \). Then, the desired estimate is an easy consequence of Theorem 2.2 with \(s = n/(n - 2) \) and Corollary 3.1 (2).

Proof of Theorem 1.2. If we combine Theorem 1.1 with \(s = n/(n - 2) \) and the estimate \(|\Gamma(x, y)| \leq C|x - y|^{2-n} \), we can prove Theorem 1.2 in the same way as in the proof of Theorem 3.1.

Under somewhat weaker assumptions that \(V \) satisfies \(V(x) \geq 0, V \not\equiv 0 \), and \(V \in (RH)^\infty \), if we apply Theorem 2.1 instead of Theorem 2.2, we can obtain a similar estimate as in Theorem 3.1. If we apply Corollary 2.1 we have

Theorem 3.2. Assume \(n \geq 3, 1 < p < n/2, V(x) \geq 0, V(x) \not\equiv 0, V \in (RH)^\infty \), and \(\Phi(x, r) \) satisfies the conditions (2.1) - (2.3). Let \(Y = L^p_{\Phi, w} \), \(W \in L^{n/2}(\mathbb{R}^n) \). Suppose \(\|W\|_{n/2, \Phi, w} \) is sufficiently small. Then there exists a constant \(C \) such that
\[\|W u\|_Y + \|u\|_{X_Y} \leq C \|L_2 u\|_Y, \quad u \in C_0^\infty(\mathbb{R}^n). \]

Example 3.1. We compare Theorem 3.1 with Theorem 3.2 in the case \(\Phi(x, r) = \log(2 + r) \), for example. Hence, \(\Phi(x, r) \) satisfies (2.1) - (2.3) with \(\lambda = 0 \) and small \(\delta > 0 \). Note that \(L^{n/2}(\mathbb{R}^n) \subset L^p_{\Phi, w} \). Thus Theorem 3.1 is stronger than Theorem 3.2 in this case. For the case \(\Phi(x, r) = r^\lambda \log(2 + r) \) with \(0 < \lambda < n(1 - 2p/n) \) and small \(\delta > 0 \), Theorem 3.1 and Theorem 3.2 complement each other.

Proof of Theorem 1.3. By Corollary 3.1 (2) there exists a constant \(C \) such that
\[\|m(x, V)^2 u\|_{L^p} + \|m(x, V) \nabla u\|_{L^p} + \|\nabla^2 u\|_{L^p} \leq C \|L_1 u\|_{L^p} \]
for every \(u \in C_0^\infty(\mathbb{R}^n) \). On the other hand, Kato’s inequality implies the operator \(L_1 \) with the domain \(D(L_1) = C_0^\infty(\mathbb{R}^n) \) is essentially \(m \)-accretive in \(L^p \) with \(1 <
\(p < +\infty \) (see, e.g., [He], [Ok], [Ku]). Combining these results, we obtain that the closure of \(L_1 \) is an isomorphism for \(X \) to \(Y = L^p(\mathbb{R}^n) \) (see also [Gu]). Hence, \(L_2^{-1}f = L_1^{-1}(1 + WL_1^{-1})^{-1}f \) represents a unique solution of \(L_2u = f \) for \(f \in L^p(\mathbb{R}^n) \). Theorem 1.3(1) is a consequence of Theorem 1.1 with \(s = n/2 \) and Theorem 1.2. Under the assumptions on \(V \), we have

\[
\|W^{1/2} \nabla L^{-1}_1 f\|_{L^p} \leq C \|W^{1/2} \nabla L^{-1}_1 (1 + WL_1^{-1})^{-1}f\|_{L^p} \leq C \|(1 + WL_1^{-1})^{-1}f\|_{L^p} \leq C \|f\|_{L^p}.
\]

Theorem 1.3(2) is a consequence of Theorem 1.1 with \(s = n \).

We should mention that our method can also be applied to other operators, e.g., uniformly elliptic operators and magnetic Schrödinger operators ([KS], [Sh2]).

References

Department of Mathematics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397, Japan

E-mail address: kurata@comp.metro-u.ac.jp

Numazu College of Technology, 3600 Ooka Numazu 410-8501, Japan

E-mail address: nishiga@la.numazu-ct.ac.jp

Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171, Japan

E-mail address: 95243001@gakushuin.ac.jp

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use