Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Boundedness of integral operators
on generalized Morrey spaces
and its application to Schrödinger operators


Authors: Kazuhiro Kurata, Seiichi Nishigaki and Satoko Sugano
Journal: Proc. Amer. Math. Soc. 128 (2000), 1125-1134
MSC (1991): Primary 35B45, 42B20; Secondary 35J10
Published electronically: August 5, 1999
MathSciNet review: 1646196
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study boundedness of integral operators on generalized Morrey spaces and its application to estimates in Morrey spaces for the Schrödinger operator $L_2=-\Delta +V(x)+W(x)$ with nonnegative $V\in (RH)_{\infty}$ (reverse Hölder class) and small perturbed potentials $W$.


References [Enhancements On Off] (What's this?)

  • [Ad] D. Adams, A note on Riesz potentials, Duke Math. J. 42(1975), 765-778.
  • [CF] Filippo Chiarenza and Michele Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), no. 3-4, 273–279 (1988). MR 985999
  • [GR] J. García-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.
  • [Gu] Denis Guibourg, Inégalités maximales pour l’opérateur de Schrödinger, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 3, 249–252 (French, with English and French summaries). MR 1205192
  • [He] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
  • [Ku] Shige Toshi Kuroda, Supekutoru-riron. II, 2nd ed., Iwanami Shoten Kiso Sūgaku [Iwanami Lectures on Fundamental Mathematics], vol. 17, Iwanami Shoten, Tokyo, 1983 (Japanese). MR 857805
  • [KS] K.Kurata, S.Sugano, A remark on estimates for uniformly elliptic operators on weighted $L^p$ spaces and Morrey spaces, preprint.
  • [Mi] Takahiro Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic analysis (Sendai, 1990) ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, pp. 183–189. MR 1261439
  • [Na] Eiichi Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95–103. MR 1273325, 10.1002/mana.19941660108
  • [Ok] Noboru Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan 34 (1982), no. 4, 677–701. MR 669276, 10.2969/jmsj/03440677
  • [Ol] Peder A. Olsen, Fractional integration, Morrey spaces and a Schrödinger equation, Comm. Partial Differential Equations 20 (1995), no. 11-12, 2005–2055. MR 1361729, 10.1080/03605309508821161
  • [Sh1] Zhong Wei Shen, 𝐿^{𝑝} estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513–546 (English, with English and French summaries). MR 1343560
  • [Sh2] Zhongwei Shen, Estimates in 𝐿^{𝑝} for magnetic Schrödinger operators, Indiana Univ. Math. J. 45 (1996), no. 3, 817–841. MR 1422108, 10.1512/iumj.1996.45.1268
  • [Ta] M.Taylor, Microlocal Analysis on Morrey spaces, Preprint.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35B45, 42B20, 35J10

Retrieve articles in all journals with MSC (1991): 35B45, 42B20, 35J10


Additional Information

Kazuhiro Kurata
Affiliation: Department of Mathematics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397, Japan
Email: kurata@comp.metro-u.ac.jp

Seiichi Nishigaki
Affiliation: Numazu College of Technology, 3600 Ooka Numazu 410-8501, Japan
Email: nishiga@la.numazu-ct.ac.jp

Satoko Sugano
Affiliation: Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, toshima-ku, Tokyo 171, Japan
Email: 95243001@gakushuin.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-99-05208-9
Received by editor(s): June 1, 1998
Published electronically: August 5, 1999
Additional Notes: The first author was partially supported by Grant-in Aid for Scientific Research (C)(No. 09640208), the Ministry of Education, Science, Sports and Culture.
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 2000 American Mathematical Society