Stability of additive mappings on large subsets

Author:
Félix Cabello Sánchez

Journal:
Proc. Amer. Math. Soc. **128** (2000), 1071-1077

MSC (2000):
Primary 39B82, 39B55

DOI:
https://doi.org/10.1090/S0002-9939-99-05218-1

Published electronically:
September 24, 1999

MathSciNet review:
1646206

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study mappings from a group into a Banach space which are ``nearly additive'' on large subsets.

**1.**F. Cabello Sánchez,*Some remarks stemming from Ulam's problem about nearly additive mappings*, Aequationes Math.**56**(1998), 233-242. CMP**98:17****2.**F. Cabello Sánchez and J. M. F. Castillo,*Banach space techniques underpinning a theory for nearly additive mappings*, Universidad de Extremadura, preprint 1998.**3.**G. L. Forti,*The stability of homomorphisms and amenability, with applications to functional equations*, Abh. Math. Sem. Univ. Hamburg**57**(1987), 215-226. MR**89b:39013****4.**G. L. Forti,*Hyers-Ulam stability of functional equations in several variables*, Aequationes Math.**50**(1995), 143-190. MR**96i:39033****5.**Z. Gajda,*On stability of additive mappings*, Internat. J. Math. Sci.**14**(1991), 431-434. MR**92e:39029****6.**Z. Gajda and Z. Kominek,*On separation theorems for subadditive and superadditive functionals*, Studia Math.**100**(1991), 25-38. MR**93h:39003****7.**R. Ger,*On functional inequalities stemming from stability questions*, General Inequalities**6**(W. Walter, Ed.), International Series in Numerical Mathematics**103**(227-240), Birkhäuser, 1992. MR**94b:39042****8.**F. P. Greenleaf,*Invariant means on topological groups*, Van Nostrand Math. Studies 16, New York, 1969. MR**40:4776****9.**D. H. Hyers and Th. M. Rassias,*Approximate homomorphisms*, Aequationes Math.**44**(1992), 125-153. MR**93i:39007****10.**D. H. Hyers, G. Isac and Th. M. Rassias,*On the asymptoticity aspect of Hyers-Ulam stability of mappings*, Proc. Amer. Math. Soc.**126**(1998), 425-430. MR**98d:39004****11.**B. E. Johnson,*Approximately multiplicative maps between Banach algebras*, J. London Math. Soc.**37**(1988), 294-316. MR**89h:46072****12.**Å. Lima and D. Yost,*Absolutely Chebyshev subspaces*, Proc. Cent. Math. Anal. Austra. Nat. Univ.**20**(1988), 116-127. MR**90h:46030****13.**Th. M. Rassias and P. \v{S}emrl,*On the behaviour of mappings which do not satisfy the Hyers-Ulam stability*, Proc. Amer. Math. Soc.**114**(1992), 989-993. MR**92g:47101****14.**M. Ribe,*Examples for the nonlocally convex three space problem*, Proc. Amer. Math. Soc.**73**(1979), 351-355. MR**81a:46010****15.**P. \v{S}emrl,*The stability of approximately additive functions*, Stability of mappings of Hyers-Ulam type (edited by Th. M. Rassias and J. Tabor), Hadronic Press, Florida (1994), 135-140. MR**95i:39029****16.**S. M. Ulam,*An Anecdotal History of the Scottish Book*(The Scottish Book, edited by R. D. Mauldin), Birkhäuser, 1981.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
39B82,
39B55

Retrieve articles in all journals with MSC (2000): 39B82, 39B55

Additional Information

**Félix Cabello Sánchez**

Affiliation:
Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06071-Badajoz, Spain

Email:
fcabello@unex.es

DOI:
https://doi.org/10.1090/S0002-9939-99-05218-1

Keywords:
Cauchy functional equation,
stability,
amenable group

Received by editor(s):
May 28, 1998

Published electronically:
September 24, 1999

Additional Notes:
This research was supported in part by DGICYT project PB97-0377 and HI project 1997-0016.

Communicated by:
Dale Alspach

Article copyright:
© Copyright 2000
American Mathematical Society