ON A CHARACTERIZATION OF THE MAXIMAL IDEAL SPACES OF COMMUTATIVE C^*-ALGEBRAS IN WHICH EVERY ELEMENT IS THE SQUARE OF ANOTHER

OSAMU HATORI AND TAKESHI MIURA

(Communicated by David R. Larson)

Dedicated to Professor Junzo Wada on his seventieth birthday

Abstract. A topological condition is given for a locally connected compact Hausdorff space on which every complex-valued continuous function is the square of another. The condition need not be necessary nor sufficient unless the space is locally connected.

1. Introduction

Let X be a compact Hausdorff space and $C(X)$ the algebra of all complex-valued continuous functions on X. Suppose that X is locally connected and A is a uniform algebra on X. Čirka \cite{2} proved that if the following condition (\ast) is satisfied for A, then $A = C(X)$.

\begin{equation}
\text{For every } f \in A \text{ there exists a } g \in A \text{ with } g^2 = f.
\end{equation}

On the other hand $C(X)$ does not always satisfy the condition (\ast): there is no continuous function on the unit circle S^1 whose square is the identity function on S^1. In this paper we give a necessary and sufficient condition for a locally connected compact Hausdorff space X on which (\ast) for $C(X)$ is satisfied. We also show that the condition is neither necessary nor sufficient for (\ast) unless X is locally connected.

2. Main results

Definition 2.1. Let X be a compact Hausdorff space. We say that the condition (\ast) holds for $C(X)$ if for each $f \in C(X)$ there exists a $g \in C(X)$ such that $f = g^2$.

Proposition 2.1. If X is a totally disconnected compact Hausdorff space, then the condition (\ast) holds for $C(X)$.

A proof of the proposition is elementary and is omitted.

\begin{flushleft}
Received by the editors February 20, 1998 and, in revised form, June 17, 1998.

2000 Mathematics Subject Classification. Primary 46J10.

Key words and phrases. Commutative Banach algebras, maximal ideal spaces.

The first author was supported in part by the Grants in Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.
\end{flushleft}
Definition 2.2. Let X be a normal space. The covering dimension $\dim X$ of X is less than or equal to n if for every finite covering \mathcal{A} there exists a refinement \mathcal{B} of \mathcal{A} such that each $x \in X$ is in at most $n + 1$ elements in \mathcal{B}.

Note that the following is well-known (cf. [4]): $\dim X \leq n$ if and only if for every closed subset F of X and every S^n-valued continuous function f defined on F, there exists S^n-valued continuous function f defined on X such that $f|_F = f$, where S^n denotes the n-sphere.

Theorem 2.2. Let X be a locally connected compact Hausdorff space. Then the following are equivalent.

(*) For every $f \in C(X)$ there exists a $g \in C(X)$ such that $f = g^2$.

(**) The first Čech cohomology group of X with integer coefficients $\check{H}^1(X, \mathbb{Z})$ is trivial and $\dim X \leq 1$.

Note that $\check{H}^1(X, \mathbb{Z})$ is isomorphic to $C(X)^{-1}/\exp C(X)$ by a theorem of Arens and Royden (cf. [4] Theorem 7.2). We require two lemmas before proving Theorem 2.2. We assume in Lemma 2.3 and Lemma 2.4 that X is a locally connected compact Hausdorff space.

Lemma 2.3. Suppose that the condition (*) holds for $C(X)$. Then the equality $C(X)^{-1} = \exp C(X)$ holds.

Proof. We show that each $f \in C(X)^{-1}$ with $f(X) \subseteq S^1$ belongs to $\exp C(X)$. It will follow by simple calculation that the conclusion holds. There exists a family $\{G_j\}_{j=1}^n$ of connected open subsets of X such that $X = \bigcup_{j=1}^n G_j$ and $\overline{f(G_j)}$ is a proper subset of S^1 for $j = 1, 2, \ldots, n$, where $\overline{\cdot}$ denotes the closure in \mathbb{C}. There exist $a_j, b_j \in \mathbb{R}$ such that $f(G_j) \subseteq \{e^{i\theta} : a_j \leq \theta \leq b_j\}$ and $b_j - a_j < 2\pi$. By the condition (*) for $C(X)$, for each $l \in \mathbb{N}$ there exists a $g_l \in C(X)$ such that $f = g_l^{2\pi}$. Since $g_l(G_j)$ is connected, there correspond $a_{j_l}, b_{j_l} \in \mathbb{R}$ such that $g_l(G_j) \subseteq \{e^{i\theta} : a_{j_l} \leq \theta \leq b_{j_l}\}$ and $b_{j_l} - a_{j_l} = (b_j - a_j)/2\pi$. For sufficiently large $l \in \mathbb{N}$, we have

$$\sum_{j=1}^n (b_{j_l} - a_{j_l}) < \frac{n\pi}{2\pi} < 2\pi.$$

Hence $g_l(X)$ is a proper subset of S^1. Therefore there exists an $h \in C(X)$ such that $g_l = e^h$. Then

$$f = g_l^{2\pi} = e^{2\pi h} \in \exp C(X).$$

We have completed the proof.

Lemma 2.4. Suppose that the equalities

$$C(X)^{-1} = \exp C(X), \quad \overline{C(X)^{-1}} = C(X)$$

hold, where $\overline{\cdot}$ denotes the closure in $C(X)$. Then the condition (*) holds for $C(X)$.

Proof. For each $f \in C(X)^{-1}$ there exists an $h \in C(X)$ such that $f = e^h$, by the hypothesis. Put $g = e^{2\pi h}$. Then $g \in C(X)^{-1}$ and $f = g^2$. In a way similar to the proof of [4] Corollary 5.9] we see that (*) holds for $C(X)$.

Lemma 2.5. Suppose that $\dim X \leq 1$. Then the equality $\overline{C(X)^{-1}} = C(X)$ holds.
Proof. We show that for each $f \in C(X)$ there corresponds \{${f_n}$\} $\subset C(X)^{-1}$ such that $f_n \rightarrow f$ uniformly on X as $n \rightarrow \infty$. For each $n \in \mathbb{N}$, put $X_n = \{x \in X : |f(x)| \leq \frac{1}{n}\}$ and $E_n = \overline{X_n}^c$, the closure of X_n^c in X. By Tietze’s extension theorem there exists a $v_n \in C(X)$ such that $v_n = |f|$ on E_n and $v_n(X) \subset [1/n, ||f||]$. Further we may assume that v_n satisfies the inequalities $1/n \leq v_n \leq 1/(n-1)$ on X_n. Since $\dim X \leq 1$, there exists $w_n \in C(X)$ such that

$$w_n|_{E_n} = \frac{f|_{E_n}}{|f|_{E_n}}$$ and $w_n(X) \subset S^1$.

Put $f_n = v_nw_n$; then $f_n \in C(X)^{-1}$. Since

$$|f(x) - f_n(x)| \leq \frac{1}{n} + \frac{1}{n-1}$$

holds for every $x \in X$, f_n converges to f uniformly on X. \hfill \Box

Proof of Theorem 2.2. Assume that (**) holds. By a theorem of Arens and Royden [3], we have $C(X)^{-1} = \exp C(X)$. Therefore (**) holds by Lemma 2.4 and Lemma 2.5.

Conversely, assume that (*) holds. Then by Lemma 2.3 $C(X)^{-1} = \exp C(X)$, so that $\hat{H}^1(X, \mathbb{Z})$ is trivial. It remains to show that (*) implies $\dim X \leq 1$. Assume that $\dim X \geq 2$. Then we see the following: there exist a closed subset F of X and an $f \in C(F)$ with $f(F) \subset S^1$ such that $f(x) \neq 0$ for any $f \in C(X)$ with $f_F = f$. In this case the following condition (#) holds. Let D be the open unit disk and \tilde{D} its closure in \mathbb{C}.

(#) For every $j \in \mathbb{N}$, the range $g(X)$ of any function $g \in C(X)$ with $g^2 |_{F}$ contains \tilde{D}.

Suppose not. Then $g_j(X) \notin \tilde{D}$ for some $j \in \mathbb{N}$ and $g_j \in C(X)$ with $g_j^2 |_{F} = f$. Then there exists a $z_0 \in D$ such that $z_0 \notin g_j(X)$. Choose a homeomorphism φ from \mathbb{C} onto itself such that $\varphi(z_0) = 0$ and that $\varphi|_{S^1}$ is identity. Put $\bar{\varphi} = (\varphi \circ g_j)/|\varphi \circ g_j|)^2$. Then $\bar{\varphi} \in C(X)$ with $\bar{\varphi}|_{F} = f$ and $\bar{\varphi}(X) \subset S^1$, which is a contradiction. We have proved that (#) holds.

With (#) we arrive at a contradiction. Fix a $\psi \in C(X)$ such that $\psi|_{F} = f$. For each $x \in X$ there corresponds a connected open neighborhood of x which satisfies the following: if $\psi(x) = 0$, then O_x is a connected open neighborhood of x such that $|\psi(y)| < \frac{1}{2}$ for every $y \in O_x$; if $\psi(x) \neq 0$, then O_x is a connected open neighborhood of x such that

$$\psi(O_x) \subset \{re^{i\theta} : 0 < r < 1 + \|\psi\|_{\infty}, |\theta - \theta_x| < \pi\},$$

where $\theta_x \in [0, 2\pi)$ is an argument of $\psi(x)$. Then by the compactness of X, $X = \bigcup_{k=1}^{m} O_{x_k}$ for some $\{O_{x_k}\}_{k=1}^{m} \subset \{O_x\}_{x \in X}$. Without loss of generality we may assume that $\psi(x_k) \neq 0$ for $k = 1, 2, \cdots, m$, where m is some constant such that $1 \leq m \leq n - 1$. Choose a sequence $\{\eta_j\}$ of functions in $C(X)$ such that $\eta_j^2 = \psi$. As in the proof of Lemma 2.3, for each $j \in \mathbb{N}$ and for $k = 1, 2, \cdots, m$ there exists a $\theta_{k_j} \in \mathbb{R}$ such that

$$\eta_j(O_{x_k}) \subset \{re^{i\theta} : 0 < r < (1 + \|\psi\|_{\infty})^{\frac{1}{2}}, |\theta - \theta_{k_j}| < \frac{\pi}{2}\}. $$
For a sufficiently large $j \in \mathbb{N}$ we have

$$\sum_{k=1}^{m} \left\{ (\theta_{k_j} + \frac{\pi}{2^j}) - (\theta_{k_j} - \frac{\pi}{2^j}) \right\} = \frac{m\pi}{2^{j-1}} < 2\pi.$$

Hence $S^1 \setminus \eta_j(X) \neq \emptyset$, which is a contradiction since $\eta_j(X) \supset \tilde{D} \supset S^1$. □

Note that the hypothesis in Theorem 2.2 that X is locally connected is essential.

(i) Let X be the Stone-Čech compactification of $[0, 1] \times \mathbb{N}$. Then we see that (*) holds for $C(X)$ and $\dim X = 1$ [3 Theorem 12 in Chapter 7]. But $\tilde{H}^1(X, \mathbb{Z})$ is not trivial. In fact, put $f_n(t) = e^{int}$ ($t \in [0, 1]$). Then the sequence $\{f_n\}_{n=1}^\infty$ is extended to a function \tilde{f} in $C(X)^{-1}$. Suppose that g_n is a function in $C([0, 1])$ with $f_n = e^{g_n}$. Then we see that $\sup \|g_n\|_\infty = +\infty$, so $\tilde{f} \not\in \exp C(X)$. Hence $\tilde{H}^1(X, \mathbb{Z})$ is not trivial, by a theorem of Arens and Royden [4].

(ii) Let $X = \bigcup_{n=0}^\infty I_n$, where $I_0 = [-1, 1] \times \{0\}$ and $I_n = [-1, 1] \times \{\frac{1}{n}\}$. We show that $\tilde{H}^1(X, \mathbb{Z})$ is trivial and $\dim X = 1$ while (*) does not hold for $C(X)$. First we show that $\tilde{H}^1(X, \mathbb{Z})$ is trivial. Let $f \in C(X)^{-1}$. For each $(t, \alpha) \in X$, put $\tilde{f}(t, \alpha) = f(t, \alpha)/f(t, 0)$. Then $\tilde{f} = 1$ on I_0, so there exists an $n_0 \in \mathbb{N}$ such that $f(I_n) \subset \{z \in \mathbb{C} : |z - 1| < 1\}$ for any $n \geq n_0$. Put $J = I_0 \cup (\bigcup_{k=n_0}^\infty I_k)$. Since $f(J) \subset \{z \in \mathbb{C} : |z - 1| < 1\}$ there exists a $g \in C(J)$ such that $\tilde{f} = e^g$. For each $n \leq n_0 - 1$, choose a $g_n \in C(I_n)$ such that $\tilde{f}|_{I_n} = e^{g_n}$. Let h_1 be as follows:

$$h_1(t, \alpha) = \begin{cases} g(t, \alpha), & (t, \alpha) \in J, \\ g_n(t, \alpha), & (t, \alpha) \in I_n, n \leq n_0 - 1. \end{cases}$$

Then $h_1 \in C(X)$ and $\tilde{f} = e^{h_1}$. Thus $f(t, \alpha) = f(t, 0)e^{h_1(t, \alpha)}$. Choose $h \in C(I_0)$ such that $f|_{I_0} = e^h$ and put $h_2(t, \alpha) = h(t)$ for every $(t, \alpha) \in X$. Then $f = e^{h_1 + h_2} \in \exp C(X)$.

Next we show that $\dim X = 1$. Let F be a closed subset of X. A proof for the case where $F \cap I_0 = \emptyset$ is simple and is omitted. We consider the case where $F \cap I_0 \neq \emptyset$. Suppose that $f \in C(F)$ and $f(F) \subset S^1$. We show that a function f is extended to a function $\tilde{f} \in C(X)$ such that $\tilde{f}(X) \subset S^1$. First we consider the case where $f = 1$ on $F \cap I_0$. There exist a $k_0 \in \mathbb{N}$ and a sequence $\{\varepsilon_j\}_{j=1}^\infty$ of real numbers tending to zero as $j \to \infty$ such that $f(F \cap I_l) \subset \{e^{i\theta} : |\theta| < \varepsilon_l\}$ for each $l \geq k_0$. We may assume that $\varepsilon_j < \pi$. Then for each $l \geq k_0$ with $F \cap I_l \neq \emptyset$ there exists an $f_l \in C(I_l)$ such that $\tilde{f}_l = f$ on $F \cap I_l$ and $\tilde{f}_l(I_l) \subset \{e^{i\theta} : |\theta| < \varepsilon_l\}$. For each $l < k_0$ with $I_l \cap F \neq \emptyset$ there exists an $\tilde{f}_l \in C(I_l)$ such that $f_l = f$ on $F \cap I_l$ and $\tilde{f}_l(I_l) \subset S^1$ since $\dim I_l = 1$. Put

$$\tilde{f}(t, \alpha) = \begin{cases} 1, & (t, \alpha) \in I_0 \text{ or } (t, \alpha) \in I_n \text{ with } F \cap I_n = \emptyset, \\ \tilde{f}_l(t, \alpha), & (t, \alpha) \in I_l, l \geq k_0 \text{ with } F \cap I_l \neq \emptyset, \\ \tilde{f}_l(t, \alpha), & (t, \alpha) \in I_l, l < k_0 \text{ with } F \cap I_l \neq \emptyset. \end{cases}$$

Then $\tilde{f} \in C(X)$, $\tilde{f}(X) \subset S^1$ and $\tilde{f}|_F = f$. Next we consider the general case. There exists an $f_0 \in C(I_0)$ such that $f_0 = f$ on $F \cap I_0$ and $f_0(I_0) \subset S^1$ since $\dim I_0 = 1$. For each $(t, \alpha) \in F$, put $f_1(t, \alpha) = f(t, \alpha)/f_0(t)$. Then $f_1 \in C(F)$, $f_1(F) \subset S^1$ and $f_1|_{F \cap I_0} = 1$. Then by the first part, there exists an $f_2 \in C(X)$ such that $f_2|_F = f_1$ and $f_2(X) \subset S^1$. For each $(t, \alpha) \in X$, put $\tilde{f}(t, \alpha) = f_2(t, \alpha)f_0(t)$. Then \tilde{f} is a desired function.
Finally we show that the condition (\#) for \(C(X)\) is not satisfied. Let \(f\) be as follows:

\[
f(t, 0) = \begin{cases}
0, & t = 0, \\
|t|e^{\frac{2\pi i}{n}}, & t \neq 0;
\end{cases}
\]

if \(n\) is an even number

\[
f(t, n) = \begin{cases}
\frac{1}{n}, & |t| \leq \frac{1}{n}, \\
|t|e^{\frac{2\pi i}{n}}, & |t| > \frac{1}{n};
\end{cases}
\]

if \(n\) is an odd number

\[
f(t, n) = \begin{cases}
\frac{1}{n}e^{(nt+1)\pi i}, & |t| \leq \frac{1}{n}, \\
|t|e^{\frac{2\pi i}{n}}, & |t| > \frac{1}{n};
\end{cases}
\]

It is easy to see that \(f \in C(X)\) and there is no \(g \in C(X)\) with \(f = g^2\).

REFERENCES

Department of Mathematical Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-chou, Niigata 950-21, Japan