Connected sums of manifolds which induce approximate fibrations

Author:
Yongkuk Kim

Journal:
Proc. Amer. Math. Soc. **128** (2000), 1497-1506

MSC (1991):
Primary 57N15, 55M25; Secondary 57M10, 54B15

DOI:
https://doi.org/10.1090/S0002-9939-00-05385-5

Published electronically:
February 3, 2000

MathSciNet review:
1670391

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Codimension-2 fibrators are -manifolds which automatically induce approximate fibration, in the following sense: given any proper mapping from an -manifold onto a -manifold such that each point-preimage is a copy of the codimension-2 fibrator, is necessarily an approximate fibration. In this paper, we give some answers to the following question: given an -manifold which is a nontrivial connected sum, when is a codimension-2 fibrator?

**1.**N. Chinen, Manifolds with nonzero Euler characteristic and codimension-2 fibrators,*Topology Appl.***86**(1998) 151-167 MR**99c:57052****2.**D.S. Coram and P.F. Duvall, Approximate fibrations,*Rocky Mountain J. Math.***7**(1977) 275-288 MR**56:1296****3.**D.S. Coram and P.F. Duvall, Approximate fibrations and a movability condition for maps,*Pacific J. Math.***72**( 1977) 41-56 MR**57:7597****4.**D.S. Coram and P.F. Duvall, Mappings from to whose point inverses have the shape of a circle,*General Topology Appl.***10**(1979) 239-246 MR**81b:57009****5.**R.J. Daverman, Submanifold decompositions that induce approximate fibrations,*Topology Appl.***33**(1989) 173-184 MR**91d:57013****6.**R.J. Daverman, Hyperhopfian groups and approximate fibrations,*Compositio Math.***86**(1993) 159-176 MR**94b:55022****7.**R.J. Daverman, Codimension-2 fibrators with finite fundamental groups,*Proc. Amer. Math. Soc.***127**(1999) 881-888 CMP**99:06****8.**R.J. Daverman, 3-manifolds with geometric structure and approximate fibrations,*Indiana Univ. Math. J.***40**(1991) 1451-1469 MR**92m:55016****9.**R.J. Daverman, Manifolds with finite first homology as codimension 2 fibrators,*Proc. Amer. Math. Soc.***113**(1991) 471-477 MR**92a:55015****10.**R.J. Daverman and L.S. Husch, Decompositions and approximate fibrations,*Michigan Math. J.***31**(1984) 197-214 MR**86a:54009****11.**I.M.S. Dey and H. Neumann, The Hopf property of free products,*Math. Z.***117**(1970) 325-339 MR**43:2099****12.**B. Eckmann, Covering and Betti numbers,*Bull. Amer. Math. Soc.***55**(1949) 95-101 MR**10:559a****13.**J.C. Hausmann, Geometric hopfian and nonhopfian situations,*Lecture Notes in Pure Appl. Math.*Marcel Decker, Inc., NY (1987) 157-166 MR**88f:57031****14.**Y. H. Im, Products of surfaces that induce approximate fibrations,*Houston J. Math.***21 no. 2**(1995) 339-348 MR**96c:57038****15.**Y. H. Im and Y. Kim, Hopfian and strongly hopfian manifolds,*Fund. Math.***159**(1999), no. 2 127-134. MR**99j:57023****16.**Y. Kim, Strongly hopfian manifolds as codimension-2 fibrators,*Topology Appl.***92**(1999), no. 3 237-245. CMP**99:09****17.**Y. Kim, Manifolds with hyperhopfian fundamental group as codimension-2 fibrators,*Topology Appl.*To appear**18.**J. Milnor, Infinite cyclic coverings, in*Conference on the Topology of Manifolds*(J.G. Hocking ed.), Prindle Weber & Schmidt, Inc., Boston, 1968, 115-133 MR**39:3497****19.**J.R. Munkres,*Elements of Algebraic Topology*, Addison Wesley Publ. Co., NY, 1984 MR**85m:55001****20.**J. Roitberg, Residually finite, hopfian and co-hopfian spaces,*Contemporary mathematics***37**(1985) 131-144 MR**86i:55009****21.**J. J. Rotman,*An Introduction to the Theory of Groups*, Springer-Verlag, 1995. MR**95m:20001**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
57N15,
55M25,
57M10,
54B15

Retrieve articles in all journals with MSC (1991): 57N15, 55M25, 57M10, 54B15

Additional Information

**Yongkuk Kim**

Affiliation:
Department of Mathematics, The University of Tennessee at Knoxville, Knoxville, Tennessee 37996-1300

Address at time of publication:
Department of Mathematics, Kyungpook National University, Taegu, 702-701, Korea

Email:
yongkuk@kyungpook.ac.kr

DOI:
https://doi.org/10.1090/S0002-9939-00-05385-5

Keywords:
Connected sum,
approximate fibration,
codimension-2 fibrator,
hopfian manifold,
hyperhopfian group,
residually finite group

Received by editor(s):
February 12, 1998

Published electronically:
February 3, 2000

Communicated by:
Ralph Cohen

Article copyright:
© Copyright 2000
American Mathematical Society