Representations of skew polynomial algebras
Author:
Søren Jøndrup
Journal:
Proc. Amer. Math. Soc. 128 (2000), 13011305
MSC (1991):
Primary 16S35; Secondary 16R20
Published electronically:
August 3, 1999
MathSciNet review:
1641638
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: C. De Concini and C. Procesi have proved that in many cases the degree of a skew polynomial algebra is the same as the degree of the corresponding quasi polynomial algebra. We prove a slightly more general result. In fact we show that in case the skew polynomial algebra is a P.I. algebra, then its degree is the degree of the quasi polynomial algebra. Our argument is then applied to determine the degree of some algebras given by generators and relations.
 1.
C.
De Concini and C.
Procesi, Quantum groups, 𝐷modules, representation
theory, and quantum groups (Venice, 1992), Lecture Notes in Math.,
vol. 1565, Springer, Berlin, 1993, pp. 31–140. MR 1288995
(95j:17012), http://dx.doi.org/10.1007/BFb0073466
 2.
K.
R. Goodearl, Prime ideals in skew polynomial rings and quantized
Weyl algebras, J. Algebra 150 (1992), no. 2,
324–377. MR 1176901
(93h:16051), http://dx.doi.org/10.1016/S00218693(05)800365
 3.
Hans
Plesner Jakobsen and Hechun
Zhang, The center of the quantized matrix algebra, J. Algebra
196 (1997), no. 2, 458–474. MR 1475119
(98i:17016), http://dx.doi.org/10.1006/jabr.1997.7121
 4.
Hans
Plesner Jakobsen and Hechun
Zhang, The center of the Dipper Donkin quantized matrix
algebra, Beiträge Algebra Geom. 38 (1997),
no. 2, 411–421. MR 1473118
(98i:16025)
 5.
S. Jøndrup, Representations of some P.I. algebras, Preprint.
 6.
J.
C. McConnell and J.
C. Robson, Noncommutative Noetherian rings, Pure and Applied
Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With
the cooperation of L. W. Small; A WileyInterscience Publication. MR 934572
(89j:16023)
 1.
 C. De Concini and C. Procesi, Quantum groups in ``Lecture Notes in Mathematics'', Vol. 1565, pp. 31140. Springer Verlag, New York/Berlin (1993). MR 95j:17012
 2.
 K.R. Goodearl, Prime ideals in Skew Polynomial Rings and Quantized Weyl Algebras, J. Algebra 150 (1992), 324377. MR 93h:16051
 3.
 H. P. Jakobsen and H. Zhang, The Center of a Quantized Matrix Algebra, J. Algebra 196 (1997), 458474. MR 98i:17016
 4.
 H.P. Jakobsen and H. Zhang, The Center of the Dipper Donkin Quantized Matrix Algebra, Beiträge zur Algebra und Geometrie 38 (2), 411421, 1997. MR 98i:16025
 5.
 S. Jøndrup, Representations of some P.I. algebras, Preprint.
 6.
 J. C. McConnell and J.C. Robson, Non Commutative Noetherian Rings, Wiley, Interscience, New York, 1987. MR 89j:16023
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
16S35,
16R20
Retrieve articles in all journals
with MSC (1991):
16S35,
16R20
Additional Information
Søren Jøndrup
Affiliation:
Mathematics Institute, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
Email:
jondrup@math.ku.dk
DOI:
http://dx.doi.org/10.1090/S0002993999051485
PII:
S 00029939(99)051485
Received by editor(s):
March 10, 1998
Received by editor(s) in revised form:
June 29, 1998
Published electronically:
August 3, 1999
Communicated by:
Ken Goodearl
Article copyright:
© Copyright 2000
American Mathematical Society
