Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Castelnuovo-Mumford regularity
of projective curves


Authors: Isabel Bermejo and Philippe Gimenez
Journal: Proc. Amer. Math. Soc. 128 (2000), 1293-1299
MSC (1991): Primary 13D45; Secondary 14Q05, 13D40
DOI: https://doi.org/10.1090/S0002-9939-99-05184-9
Published electronically: August 5, 1999
MathSciNet review: 1646319
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an effective method to compute the regularity of a saturated ideal $I$ defining a projective curve that also determines in which step of a minimal graded free resolution of $I$ the regularity is attained.


References [Enhancements On Off] (What's this?)

  • 1. D. Bayer, The division algorithm and the Hilbert scheme, Thesis, Harvard University, Cambridge, MA, 1982.
  • 2. D. Bayer and D. Mumford, What can be computed in Algebraic Geometry? In: Computational Algebraic Geometry and Commutative Algebra, Proceedings Cortona 1991 (D. Eisenbud and L. Robbiano, Eds.), Cambridge University Press, 1993, 1-48. MR 95d:13032
  • 3. D. Bayer and M. Stillman, A criterion for detecting $m$-regularity, Invent. Math. 87 (1987) 1-11. MR 87k:13019
  • 4. D. Bayer and M. Stillman, Macaulay, a system for computation in Algebraic Geometry and Commutative Algebra, 1992, available via anonymous ftp from math.harvard.edu.
  • 5. I. Bermejo and M. Lejeune-Jalabert, Sur la compléxité du calcul des projections d'une courbe projective, to appear in Comm. in Algebra.
  • 6. D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, Graduate Texts in Mathematics 150, Springer, Berlin, Heidelberg, New York, 1995.
  • 7. D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicities, J. Algebra 88 (1984) 89-133. MR 85f:13023
  • 8. G.M. Greuel, G. Pfister and H. Schoenemann, Singular, a system for computation in Algebraic Geometry and Singularity Theory, 1995, available via anonymous ftp from helios.mathematik.uni-kl.de.
  • 9. M. Lejeune-Jalabert, Effectivité de calculs polynomiaux, Cours de D.E.A., Institut Fourier, Grenoble, 1984-85.
  • 10. P. Schenzel, On the use of Local Cohomology in Algebra and Geometry, In: Six Lectures on Commutative Algebra (J. Elias, J.M. Giral, R.M. Miró-Roig and S. Zarzuela, Eds.), Progress in Mathematics 166, Birkhauser, Boston, 1998.
  • 11. W.V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Algorithms and Computation in Mathematics 2, Springer, Berlin, Heidelberg, New York, 1998. MR 99c:13048

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13D45, 14Q05, 13D40

Retrieve articles in all journals with MSC (1991): 13D45, 14Q05, 13D40


Additional Information

Isabel Bermejo
Affiliation: Departamento de Matematica Fundamental, Facultad de Matematicas, Universidad de La Laguna, 38271-La Laguna, Tenerife, Spain
Email: ibermejo@ull.es

Philippe Gimenez
Affiliation: Departamento de Algebra, Geometria y Topologia, Facultad de Ciencias, Universidad de Valladolid, 47005-Valladolid, Spain
Email: pgimenez@wamba.cpd.uva.es

DOI: https://doi.org/10.1090/S0002-9939-99-05184-9
Keywords: Regularity, projective curves, Hilbert functions
Received by editor(s): June 23, 1998
Published electronically: August 5, 1999
Additional Notes: The first author was supported in part by D.G.U.I., Gobierno de Canarias.
The second author was supported in part by D.G.I.C.Y.T., PB94-1111-C02-01.
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society