Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Class number 3 problem
for the simplest cubic fields


Author: Dongho Byeon
Journal: Proc. Amer. Math. Soc. 128 (2000), 1319-1323
MSC (2000): Primary 11R16, 11R29
DOI: https://doi.org/10.1090/S0002-9939-99-05330-7
Published electronically: October 27, 1999
MathSciNet review: 1664337
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give some necessary conditions for class numbers of the simplest cubic fields to be 3 and, using Lettl's lower bounds of residues at $s=1$ of Dedekind zeta functions attached to cyclic cubic fields, determine all the simplest cubic fields of class number 3.


References [Enhancements On Off] (What's this?)

  • 1. N. C. Ankeny, S. Chowla and H. Hasse, On the class-number of the maximal real subfield of a cyclotomic field, J. Reine Angew. Math. 217 (1965), 217-220. MR 30:3078
  • 2. F. Gerth III, Sylow 3-subgroups of ideal class groups of certain cubic fields, Thesis Princeton University, 1972. MR 47:3347
  • 3. G. Gras, Sur les l-Classes d'Idéaux dans les Extensions Cycliques Relative de Degré Premier, Thesis, Grenoble, 1972. MR 50:12967
  • 4. M.-N. Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de $\mathbb{Q}$, J. Reine Angew. Math., 277 (1975), 89-116. MR 52:10675
  • 5. M.-G. Leu, On a determination of certain real quadratic fields of class number two, J. Number Theory 33 (1989), 101-106. MR 90j:11110
  • 6. F. Lemmermeyer and A. Pethö, Simplest cubic fields, Manuscripta Math. 88 (1995), 53-58. MR 96g:11131
  • 7. G. Lettl, A lower bound for the class number of certain cubic number fields, Math. Compu. 46, No. 174 (1986), 659-666. MR 87e:11123
  • 8. D. Shanks, The simplest cubic fields, Math. Compu. 28, No. 128 (1974), 1137-1152. MR 50:4537
  • 9. L. C. Washington, Class numbers of the simplest cubic fields, Math. Compu. 48, No. 177 (1987), 371-384. MR 88a:11107

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11R16, 11R29

Retrieve articles in all journals with MSC (2000): 11R16, 11R29


Additional Information

Dongho Byeon
Email: dhbyeon@kias.re.kr

DOI: https://doi.org/10.1090/S0002-9939-99-05330-7
Received by editor(s): July 6, 1998
Published electronically: October 27, 1999
Additional Notes: This research was supported by POSTECH/BSRI special fund
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society