Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Analytic continuation of multiple zeta functions


Author: Jianqiang Zhao
Journal: Proc. Amer. Math. Soc. 128 (2000), 1275-1283
MSC (1991): Primary 11M99; Secondary 30D30, 30D10
DOI: https://doi.org/10.1090/S0002-9939-99-05398-8
Published electronically: August 5, 1999
MathSciNet review: 1670846
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we shall define the analytic continuation of the multiple (Euler-Riemann-Zagier) zeta functions of depth $d$:

\begin{displaymath}\zeta(s_1,\dots,s_d):= \sum _{0<n_1 < n_2<\cdots<n_d} \frac{1}{n_1^{s_1}n_2^{s_2}\cdots n_d^{s_d}},\end{displaymath}

where $\re(s_d)>1$ and $\sum _{j=1}^d\re(s_j)>d$. We shall also study their behavior near the poles and pose some open problems concerning their zeros and functional equations at the end.


References [Enhancements On Off] (What's this?)

  • 1. T. M. Apostol, and T. H. Vu, Dirichlet series related to the Riemann zeta function, J. of Number Theory 19 (1984), pp. 1-99. MR 85j:11106
  • 2. D. Borwein, J.M. Borwein, and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. 38 (1995), pp. 1-99. MR 96f:11106
  • 3. D.J. Broadhurst, Conjectured enumeration of irreducible multiple zeta values, from knots and Feynman diagrams, preprint hep-th/9612012, available at http://xxx.lanl.gov/list/hep-th/9612.
  • 4. A. A. Beilinson and P. Deligne, Interpretation motivique de la conjecture de Zagier, in: Symp. in Pure Math. vol. 55, part 2, 1994, pp. 23-41. MR 95a:19008
  • 5. L. Euler, Meditationes circa singvlare seriervm genus, Novi Comm. Acad. Sci. Petropol 20 (1775), pp. 1-99.
  • 6. I. M. Gelfand, and G. E. Shilov, Generalized Functions vol. I, Academic Press, New York, London, 1964. MR 55:8786a
  • 7. N. Kurokawa, Multiple zeta functions: an example, in: Zeta Functions in Geometry, (Tokyo, 1990), Adv. Stud. Pure. Math. vol. 21, Kinokuniya, Tokyo, 1992, pp. 219-226. MR 94f:11084
  • 8. T. Q. T. Le and J. Murakami, Kontsevich integral for the Homely polynomial and relations between values of multiple zeta functions, Topology and Appl. 62 (1995), pp. 1-99. MR 96c:57017
  • 9. S. Lichtenbaum, Values of zeta functions at non-negative integers, in: Number theory, Noordwijkerhout 1983, Lecture Notes in Math. vol. 1068, Springer-Verlag, 1984, pp. 127-138. CMP 16:17
  • 10. D. Zagier, Polylogarithms, Dedekind zeta functions, and the algebraic $K$-theory of fields, in: Arithmetic algebraic geometry (Texel, 1989), Prog. in Math. vol. 89, B. van der Geer, F. Oort and J. Steenbrink (eds.), Birkhäuser Boston, MA, pp. 391-430. MR 92f:11161
  • 11. D. Zagier, Values of zeta functions and their applications, in: Proc. of the First European Congress of Math., Prog. in Math. vol. 120, part II (Paris, 1992), Birkhäuser, Basel, pp. 497-512. MR 96k:11110

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11M99, 30D30, 30D10

Retrieve articles in all journals with MSC (1991): 11M99, 30D30, 30D10


Additional Information

Jianqiang Zhao
Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
Address at time of publication: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Email: jzhao@math.brown.edu

DOI: https://doi.org/10.1090/S0002-9939-99-05398-8
Keywords: Analytic continuation, multiple zeta function, generalized function
Received by editor(s): June 21, 1998
Published electronically: August 5, 1999
Communicated by: Dennis A. Hejhal
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society