Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A relation between certain interpolated Cuntz algebras and interpolated free group factors


Authors: Yoshimichi Ueda and Yasuo Watatani
Journal: Proc. Amer. Math. Soc. 128 (2000), 1397-1404
MSC (2000): Primary 46L09, 46L35, 46L54
DOI: https://doi.org/10.1090/S0002-9939-99-05470-2
Published electronically: September 27, 1999
MathSciNet review: 1691008
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate von Neumann algebras generated by the real parts of generators of Toeplitz extensions of interpolated Cuntz algebras $\mathcal O_{\beta}$ on sub-Fock spaces. We show that some of them are isomorphic to interpolated free group factors $L(F_r)$. For example, in case of the golden number $\beta = \frac{1+\sqrt{5}}{2}$ the corresponding number $r$ is $\frac{3}{2}$.


References [Enhancements On Off] (What's this?)

  • 1. M. Bo\.{z}ejko, B. Kümmerer and R. Speicher, $q$-Gaussian Processes: Non-commutative and Classical Aspects, Comm. Math. Phys. 185 (1997), 129-154. MR 98h:81053
  • 2. J. Cuntz, Simple $C^*$algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185. MR 57:7189
  • 3. J. Cuntz and W. Krieger, A class of $C^*$-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268. MR 82f:46073a
  • 4. K. Dykema, Interpolated free group factors, Pacific J. Math. 163 (1994), 123-135. MR 95c:46103
  • 5. K. Dykema, Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J. 69 (1993), 97-119. MR 93m:46071
  • 6. K. Dykema, Amalgamated free products of multi-matrix algebras, Amer. J. Math. 117 (1995), 1555-1602. MR 97b:46075
  • 7. K. Dykema and A. Nica, On the Fock representation of the q-commutation relations, J. Reine Angew. Math. 440 (1993), 201-212. MR 94e:46117
  • 8. D. E. Evans and A. Kishimoto, Trace-scaling automorphisms of certain stable AF algebras, Hokkaido Math. J. 26 (1997), 211-224. MR 98e:46081
  • 9. P. E. T. Jørgensen, L. M. Schmitt and R. F. Werner, q-Canonical commutation relations and stability of the Cuntz algebras, Pacific J. Math. 165 (1994), 131-151. MR 95g:46116
  • 10. Y. Katayama, K. Matsumoto and Y. Watatani, Simple $C^*$-algebras arising from $\beta$-expansion of real numbers, Ergod. Th. Dynam. Sys. 18 (1998), 937-962. CMP 99:01
  • 11. K. Matsumoto, On $C^*$-algebras associated with subshifts, Internat. J. Math. 10 (1998), 357-374. MR 98h:4077
  • 12. K. Matsumoto K-theory for $C^*$-algebras associated with subshifts, Math. Scand. 82 (1998), 237-255. CMP 99:01
  • 13. W. Parry On the $\beta$-expansion of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960), 401-416. MR 26:288
  • 14. F. Radelescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994), 347-389.
  • 15. A. Renyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493. MR 20:3843
  • 16. D. Voiculescu, Symmetries of some reduced free product $C^*$-algebras, Operator Algebras and Their Connections with Toplogy and Ergodic Theory (Lecture Notes in Math. vol. 1132, pp. 556-588) Berlin Heidelberg New York: Springer 1985. MR 87d:46075
  • 17. D. Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104 (1991) 201-220. MR 92d:46163
  • 18. D. Voiculescu, Circular and semicircular systems and free product factors, Progr. Math. 92 (1990), 45-60, Birkhäuser Boston, MA. MR 92e:46124
  • 19. D. Voiculescu, K. Dykema and A. Nica, Free Random Variables CRM Monograph Series, vol. I, Amer. Math. Soc. Providence, RI, 1992. MR 94c:46133

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L09, 46L35, 46L54

Retrieve articles in all journals with MSC (2000): 46L09, 46L35, 46L54


Additional Information

Yoshimichi Ueda
Affiliation: Graduate School of Mathematics, Kyushu University, Fukuoka, Ropponmatsu, 810-8560, Japan
Address at time of publication: Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
Email: ueda@math.sci.hiroshima-u.ac.jp

Yasuo Watatani
Affiliation: Graduate School of Mathematics, Kyushu University, Fukuoka, Ropponmatsu, 810-8560, Japan
Email: watatani@math.kyushu-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-99-05470-2
Keywords: Cuntz algebra, free group factor, $\beta$-shift
Received by editor(s): June 29, 1998
Published electronically: September 27, 1999
Communicated by: David R. Larson
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society