Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On Vorontsov's Theorem on K3 surfaces with non-symplectic group actions

Authors: Keiji Oguiso and De-Qi Zhang
Journal: Proc. Amer. Math. Soc. 128 (2000), 1571-1580
MSC (2000): Primary 14J28
Published electronically: February 25, 2000
MathSciNet review: 1676296
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


We shall give a proof for Vorontsov's Theorem and apply this to classify log Enriques surfaces with large prime canonical index.

References [Enhancements On Off] (What's this?)

  • [BPV] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
  • [Bl] Raimund Blache, The structure of l.c. surfaces of Kodaira dimension zero. I, J. Algebraic Geom. 4 (1995), no. 1, 137–179. MR 1299007
  • [Ka] Yujiro Kawamata, The cone of curves of algebraic varieties, Ann. of Math. (2) 119 (1984), no. 3, 603–633. MR 744865, 10.2307/2007087
  • [Kd] K. Kodaira, On compact analytic surfaces. II, III, Ann. of Math. (2) 77 (1963), 563–626; ibid. 78 (1963), 1–40. MR 0184257
  • [Ko] Shigeyuki Kondō, Automorphisms of algebraic 𝐾3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan 44 (1992), no. 1, 75–98. MR 1139659, 10.2969/jmsj/04410075
  • [MM] J. Myron Masley and Hugh L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248–256. MR 0429824
  • [MO] N. Machida and K. Oguiso, On $K3$ surfaces admitting finite non-symplectic group actions, J. Math. Sci. Univ. Tokyo 5 (1998), no. 2, 273-297. CMP 98:16
  • [Ne] André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ.Math. No. 21 (1964), 128 (French). MR 0179172
  • [Ni1] V. V. Nikulin, Finite groups of automorphisms of Kählerian 𝐾3 surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137 (Russian). MR 544937
  • [Ni2] V. V. Nikulin, Factor groups of the automorphism group of hyperbolic forms by the subgroups generated by $2-$reflections, J. Soviet Math. 22 (1983), 1401-1475.
  • [Ni3] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
  • [Og] Keiji Oguiso, On algebraic fiber space structures on a Calabi-Yau 3-fold, Internat. J. Math. 4 (1993), no. 3, 439–465. With an appendix by Noboru Nakayama. MR 1228584, 10.1142/S0129167X93000248
  • [OZ1] Keiji Oguiso and De-Qi Zhang, On the most algebraic 𝐾3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math. 118 (1996), no. 6, 1277–1297. MR 1420924
  • [OZ2] K. Oguiso and D.-Q. Zhang, On extremal log Enriques surfaces, II,, Tohoku Math. J. 50 (1998), 419 - 436. CMP 98:17
  • [OZ3] K. Oguiso and D.-Q. Zhang, On the complete classification of extremal log Enriques surfaces, Math. Z. to appear.
  • [PS-S] I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type 𝐾3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 0284440
  • [RS] A. N. Rudakov and I. R. Shafarevich, Surfaces of type 𝐾3 over fields of finite characteristic, Current problems in mathematics, Vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981, pp. 115–207 (Russian). MR 633161
  • [Sh] Tetsuji Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211–240. MR 1081832
  • [Ue] Kenji Ueno, A remark on automorphisms of Enriques surfaces, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 23 (1976), no. 1, 149–165. MR 0404268
  • [Vo] S. P. Vorontsov, Automorphisms of even lattices arising in connection with automorphisms of algebraic 𝐾3-surfaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1983), 19–21 (Russian, with English summary). MR 697215
  • [Z1] De-Qi Zhang, Logarithmic Enriques surfaces, J. Math. Kyoto Univ. 31 (1991), no. 2, 419–466. MR 1121173
  • [Z2] De-Qi Zhang, Logarithmic Enriques surfaces. II, J. Math. Kyoto Univ. 33 (1993), no. 2, 357–397. MR 1231749

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14J28

Retrieve articles in all journals with MSC (2000): 14J28

Additional Information

Keiji Oguiso
Affiliation: Department of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo, Japan

De-Qi Zhang
Affiliation: Department of Mathematics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260

Received by editor(s): April 11, 1997
Published electronically: February 25, 2000
Communicated by: Ron Donagi
Article copyright: © Copyright 2000 American Mathematical Society