Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On condensations of $C_{p}$-spaces onto compacta


Author: A. V. Arhangel'skii
Journal: Proc. Amer. Math. Soc. 128 (2000), 1881-1883
MSC (2000): Primary 54A10, 54C35, 54C10
DOI: https://doi.org/10.1090/S0002-9939-00-05758-0
Published electronically: February 25, 2000
Erratum: Proc. Amer. Math. Soc. 130 (2002), 1875.
MathSciNet review: 1751998
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A condensation is a one-to-one onto mapping. It is established that, for each $\sigma $-compact metrizable space $X$, the space $C_{p}(X)$ of real-valued continuous functions on $X$ in the topology of pointwise convergence condenses onto a metrizable compactum. Note that not every Tychonoff space condenses onto a compactum.


References [Enhancements On Off] (What's this?)

  • [1] A.V. Arhangelskii, Topological Function Spaces (Kluwer Academic Publishers, Dordrecht, 1992), 205. MR 92i:54022
  • [2] A.V. Arhangelskii, $C_{p}$-theory, p. 1-56 in: M. Husek and J. van Mill, Eds., Recent Progress in General Topology, North-Holland, Amsterdam-London-New-York, 1992, 796. MR 95g:54004
  • [3] A.V. Arhangelskii, Function spaces in the topology of pointwise convergence and compact sets, Russian Math. Surveys 39:5 (1984), 9-56.
  • [4] A.V. Arhangelskii and V.I. Ponomarev, Fundamentals of General Topology: Problems and Exercises, Reidel, 1984. MR 87i:54001
  • [5] S. Banach, Livre Ecossais, Problem 1, 17:8, 1935; Colloq. Math. 1 (1947), p. 150.
  • [6] T. Dobrowolski and W. Marciszewski, Classification of function spaces with the topology determined by a countable dense set, Fundamenta Mathematicae 148 (1995), 35-62. MR 96k:54017
  • [7] E.G. Pytkeev, Upper bounds of Topologies, Matem. Notes 20:4 (1976), 831-837. MR 55:1262

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54A10, 54C35, 54C10

Retrieve articles in all journals with MSC (2000): 54A10, 54C35, 54C10


Additional Information

A. V. Arhangel'skii
Affiliation: Department of Mathematics, 321 Morton Hall, Ohio University, Athens, Ohio 45701; Chair of General Topology and Geometry, Mech.-Math. Faculty, Moscow State University, Moscow 119899, Russia
Email: arhangel@bing.math.ohiou.edu, arhala@arhala.mccme.ru

DOI: https://doi.org/10.1090/S0002-9939-00-05758-0
Keywords: Condensation, compactum, network, topology of pointwise convergence, $\sigma $-compact space, Borel space, $P$-space
Received by editor(s): May 24, 1997
Received by editor(s) in revised form: May 15, 1998
Published electronically: February 25, 2000
Communicated by: Alan Dow
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society