Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Interpolating sequences
in the spectrum of $H^{\infty }$ I


Author: Raymond Mortini
Journal: Proc. Amer. Math. Soc. 128 (2000), 1703-1710
MSC (1991): Primary 46J15
DOI: https://doi.org/10.1090/S0002-9939-99-05161-8
Published electronically: October 6, 1999
MathSciNet review: 1641069
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a sequence of trivial points in $M(H^{\infty })$ is interpolating if and only if it is discrete. This answers a question of K. Izuchi. We also give a sufficient topological condition for a sequence of nontrivial points to be interpolating.


References [Enhancements On Off] (What's this?)

  • [1] Axler, S., Gorkin, P.: Sequences in the maximal ideal space of $H^\infty $, Proc. Amer. Math. Soc. 108 (1990), 731-740. MR 90h:46087
  • [2] Dufresnoy, A.: Sur les compacts d'interpolation du spectre de $H^\infty (\mathbb D)$. Studia Math. 43 (1972), 235-244. MR 47:838
  • [3] Gamelin, T.: Uniform Algebras, 2nd ed., Chelsea, New York, 1984.
  • [4] Garnett, J.B.: Bounded Analytic Functions , Academic Press, New York 1981. MR 83g:30037
  • [5] Gorkin, P., Lingenberg, H.-M., Mortini, R.: Homeomorphic disks in the spectrum of $H^\infty $, Indiana Univ. Math. J. 39 (1990), 961-983. MR 92b:46082
  • [6] Guo, Kunyu: The interpolation problem on the maximal ideal space of $H^\infty $. Northeast Math. J. 10 (1994), 208-214. MR 95k:46085
  • [7] Guo, Kunyu: The Earl theorem on the maximal ideal space of $H^\infty $. J. Fudan Univ. 35 (1996), 393-396. MR 98c:46105
  • [8] Hoffman, K.: Bounded analytic functions and Gleason parts, Ann. Math. 86 (1967), 74-111. MR 35:5945
  • [9] Izuchi, Keiji: Interpolating sequences in a homeomorphic part of $H^\infty $, Proc. Amer. Math. Soc. 111 (1991), 1057-1065. MR 91i:46056
  • [10] Izuchi, Keiji: Interpolating sequences in the maximal ideal space of $H^\infty $, J. Math. Soc. Japan 43 (1991), 721-731. MR 92m:30071
  • [11] Izuchi, Keiji: Interpolating sequences in the maximal ideal space of $H^\infty $ II, Operator Theory, Advances and Applications, Vol. 59 (1992), 221-233.MR 94k:30088
  • [12] Suarez, D.: Cech cohomology and covering dimension for the $H^\infty $ maximal ideal space, J. Funct. Anal. 123 (1994), 233-263. MR 95g:46100
  • [13] Suarez, D.: Trivial Gleason parts and the topological stable rank of $H^\infty $, Amer. J. Math. 118 (1996), 879-904. MR 97i:46092
  • [14] Wei, Sun: An interpolating theorem on the maximal ideal space of $H^\infty $, J. Sichuan Univ. 32 (1995), 117-120 (in Chinese). MR 96f:46100
  • [15] Wei, Sun: Countably compact Property of $G(H^\infty )$, Northeast Math. J. 12 (1996), 421-426. MR 98g:46071

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46J15

Retrieve articles in all journals with MSC (1991): 46J15


Additional Information

Raymond Mortini
Affiliation: Département de Mathématiques, Université de Metz, Ile du Saulcy, F-57045 Metz, France
Email: mortini@poncelet.univ-metz.fr

DOI: https://doi.org/10.1090/S0002-9939-99-05161-8
Received by editor(s): March 6, 1998
Received by editor(s) in revised form: July 13, 1998
Published electronically: October 6, 1999
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society