Chern numbers of certain Lefschetz fibrations

Author:
András K. Stipsicz

Journal:
Proc. Amer. Math. Soc. **128** (2000), 1845-1851

MSC (1991):
Primary 57R99, 57M12

DOI:
https://doi.org/10.1090/S0002-9939-99-05172-2

Published electronically:
October 18, 1999

Erratum:
Proc. Amer. Math. Soc. 128 (2000), 2833-2834.

MathSciNet review:
1641113

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We address the geography problem of relatively minimal Lefschetz fibrations over surfaces of nonzero genus and prove that if the fiber-genus of the fibration is positive, then (equivalently, ) holds for those symplectic 4-manifolds. A useful characterization of minimality of such symplectic 4-manifolds is also proved.

**[BPV]**W. Barth, C. Peters and A. Van de Ven,*Compact complex surfaces*, Ergebnisse der Mathematik, Spinger-Verlag Berlin, 1984. MR**86c:32026****[D1]**S. Donaldson,*An application of gauge theory to four dimensional topology*, J. Diff. Geom.**18**(1983), 279-315. MR**85c:57015****[D2]**S. Donaldson,*Symplectic submanifolds and almost-complex geometry*, J. Diff. Geom.**44**(1996), 666-705. MR**98h:53045****[F]**M. Freedman,*The topology of four-dimensional manifolds*, J. Diff. Geom.**17**(1982), 357-453. MR**84b:57006****[FS1]**R. Fintushel and R. Stern,*Immersed spheres in 4-manifolds and the immersed Thom-conjecture*, Turkish J. Math.**19**(1995), 27-40. MR**96j:57036****[FS2]**R. Fintushel and R. Stern,*Rational blowdowns of smooth 4-manifolds*, J. Diff. Geom.**46**(1997), 181-235. MR**98j:57047****[G]**R. Gompf,*Lecture at MSRI, 1997.***[GS]**R. Gompf and A. Stipsicz*4-Manifolds and Kirby Calculus*, book in preparation.**[Ka]**A. Kas,*On the handlebody decomposition associated to a Lefschetz fibration*Pacific J. Math.**89**(1980), 89-104. MR**82f:57012****[Ko]**D. Kotschick,*The Seiberg-Witten invariants of symplectic four-manifolds [after C. H. Taubes]*, Seminare Bourbaki 48 ème année (1995-96) n 812, 195-220. MR**98h:57057****[KM]**P. Kronheimer and T. Mrowka,*The genus of embedded surfaces in the projective plane*, Math. Res. Letters**1**(1994) 797-808. MR**96a:57073****[M]**Y. Matsumoto,*Diffeomorphism types of elliptic surfaces*, Topology**25**(1986), 544-563. MR**88b:32061****[MSzT]**J. Morgan, Z. Szabó and C. Taubes,*A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture*, J. Diff. Geom.**44**(1996) 818-893. MR**97m:57052****[P]**U. Persson,*Chern invariants of surfaces of general type*, Compositio Math.**43**(1981), 3-58. MR**83b:14012****[PPX]**U. Persson, C. Peters and G. Xiao,*Geography of spin surfaces*, Topology**35**(1996), 845-862. MR**98h:14046****[S1]**A. Stipsicz,*A note on the geography of symplectic manifolds*, Turkish J. Math.**20**(1996), 135-139. MR**97m:57035****[S2]**A. Stipsicz,*Simply connected symplectic 4-manifolds with positive signature*, preprint.**[T1]**C. Taubes,*The Seiberg-Witten invariants and symplectic forms*, Math. Res. Letters**1**(1994), 809-822. MR**95j:57039****[T2]**C. Taubes,*: From the Seiberg-Witten equations to pseudo-holomorphic curves*, Journal of the AMS**9**(1996), 845-918. MR**97a:57033****[T3]**C. Taubes,*Counting pseudo-holomorphic submanifolds in dimension 4*, J. Diff. Geom.**44**(1996), 818-893. MR**97k:58029****[W]**E. Witten,*Monopoles and four-manifolds*, Math. Res. Lett.**1**(1994), 769-796. MR**96d:57035**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
57R99,
57M12

Retrieve articles in all journals with MSC (1991): 57R99, 57M12

Additional Information

**András K. Stipsicz**

Affiliation:
Department of Analysis, ELTE TTK, 1088. Múzeum krt. 6-8., Budapest, Hungary

Address at time of publication:
Department of Mathematics, University of California, Irvine, California 92697-3875

Email:
stipsicz@cs.elte.hu

DOI:
https://doi.org/10.1090/S0002-9939-99-05172-2

Keywords:
4-manifolds,
Lefschetz fibrations,
geography problem

Received by editor(s):
June 29, 1998

Received by editor(s) in revised form:
July 14, 1998

Published electronically:
October 18, 1999

Additional Notes:
Supported by the Magyary Zoltán Foundation and OTKA

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 2000
American Mathematical Society