Kuttner's problem and a Pólya type criterion

for characteristic functions

Author:
Tilmann Gneiting

Journal:
Proc. Amer. Math. Soc. **128** (2000), 1721-1728

MSC (1991):
Primary 42A82, 60E10; Secondary 42A24, 42A38

DOI:
https://doi.org/10.1090/S0002-9939-99-05200-4

Published electronically:
October 27, 1999

MathSciNet review:
1646306

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a continuous function with and . If is convex, then , , is the characteristic function of an absolutely continuous probability distribution. The criterion complements Pólya's theorem and applies to characteristic functions with various types of behavior at the origin. In particular, it provides upper bounds on Kuttner's function , , which gives the minimal value of such that is a characteristic function. Specifically, . Furthermore, improved lower bounds on Kuttner's function are obtained from an inequality due to Boas and Kac.

**1.**Torben Maack Bisgaard and Zoltán Sasvári,*On the positive definiteness of certain functions*, Math. Nachr.**186**(1997), 81–99. MR**1461214****2.**R. P. Boas and M. Kac,*Inequalities for Fourier transforms of positive functions*, Duke Math. J.**12**(1945), 189-206. MR**6:265h****3.**William Feller,*An introduction to probability theory and its applications. Vol. II.*, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0270403****4.**Julian Keilson and F. W. Steutel,*Mixtures of distributions, moment inequalities and measures of exponentiality and normality*, Ann. Probability**2**(1974), 112–130. MR**0356180****5.**B. Kuttner,*On the Riesz means of a Fourier series (II)*, J. London Math. Soc.**19**(1944), 77-84. MR**7:59d****6.**Eugene Lukacs,*Characteristic functions*, Hafner Publishing Co., New York, 1970. Second edition, revised and enlarged. MR**0346874****7.**Jolanta K. Misiewicz and Donald St. P. Richards,*Positivity of integrals of Bessel functions*, SIAM J. Math. Anal.**25**(1994), no. 2, 596–601. MR**1266579**, https://doi.org/10.1137/S0036141092226934**8.**G. Pólya,*Remarks on characteristic functions*, Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), University of California Press, 1949, pp. 115-123. MR**10:463c****9.**Zoltán Sasvári,*On a classical theorem in the theory of Fourier integrals*, Proc. Amer. Math. Soc.**126**(1998), no. 3, 711–713. MR**1469433**, https://doi.org/10.1090/S0002-9939-98-04604-8**10.**Holger Wendland,*Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree*, Adv. Comput. Math.**4**(1995), no. 4, 389–396. MR**1366510**, https://doi.org/10.1007/BF02123482**11.**R. E. Williamson,*Multiply monotone functions and their Laplace transforms*, Duke Math. J.**23**(1956), 189-207. MR**17:1061d****12.**A. Wintner,*On a family of Fourier transforms*, Bull. Amer. Math. Soc.**48**(1942), 304-308. MR**3:232a****13.**Zong Min Wu,*Compactly supported positive definite radial functions*, Adv. Comput. Math.**4**(1995), no. 3, 283–292. MR**1357720**, https://doi.org/10.1007/BF03177517**14.**V. P. Zastavnyi,*On positive definiteness of some functions*, Manuscript, Donetsk State University, Donetsk, Ukraine, 1998.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
42A82,
60E10,
42A24,
42A38

Retrieve articles in all journals with MSC (1991): 42A82, 60E10, 42A24, 42A38

Additional Information

**Tilmann Gneiting**

Affiliation:
Department of Statistics, Box 354322, University of Washington, Seattle, Washington 98195

Email:
tilmann@stat.washington.edu

DOI:
https://doi.org/10.1090/S0002-9939-99-05200-4

Received by editor(s):
July 13, 1998

Published electronically:
October 27, 1999

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 2000
American Mathematical Society