On integers of the form
Author:
YongGao Chen
Journal:
Proc. Amer. Math. Soc. 128 (2000), 16131616
MSC (2000):
Primary 11A07, 11B25
Published electronically:
November 23, 1999
MathSciNet review:
1695159
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we prove that the set of positive odd integers which have no representation of the form , where , are distinct odd primes and are nonnegative integers, has positive lower asymptotic density in the set of all positive odd integers.
 1.
A.
Baker, The theory of linear forms in logarithms, Transcendence
theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge,
1976) Academic Press, London, 1977, pp. 1–27. MR 0498417
(58 #16543)
 2.
A. S. Bang, Taltheoretiske Undersgelser, Tidsskrift for Mat. (5), 4(1886), 7080, 130137.
 3.
G. D. Birkhoff and H. S. Vandiver, On the integral divisors of , Ann. Math. 5(1904), 173180.
 4.
S.
L. G. Choi, Covering the set of integers by
congruence classes of distinct moduli, Math.
Comp. 25 (1971),
885–895. MR 0297692
(45 #6744), http://dx.doi.org/10.1090/S00255718197102976927
 5.
Fred
Cohen and J.
L. Selfridge, Not every number is the sum or
difference of two prime powers, Math. Comp.
29 (1975), 79–81.
Collection of articles dedicated to Derrick Henry Lehmer on the occasion of
his seventieth birthday. MR 0376583
(51 #12758), http://dx.doi.org/10.1090/S00255718197503765830
 6.
P.
Erdös, On integers of the form 2^{𝑘}+𝑝 and
some related problems, Summa Brasil. Math. 2 (1950),
113–123. MR 0044558
(13,437i)
 7.
Richard
K. Guy, Unsolved problems in number theory, 2nd ed., Problem
Books in Mathematics, SpringerVerlag, New York, 1994. Unsolved Problems in
Intuitive Mathematics, I. MR 1299330
(96e:11002)
 8.
N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 57(1934), 668678.
 9.
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3(1892), 265284.
 1.
 A. Baker, The theory of linear forms in logarithms, Transcendence Theory: Advances and Applications (Academic Press, London and New York, 1977). MR 58:16543
 2.
 A. S. Bang, Taltheoretiske Undersgelser, Tidsskrift for Mat. (5), 4(1886), 7080, 130137.
 3.
 G. D. Birkhoff and H. S. Vandiver, On the integral divisors of , Ann. Math. 5(1904), 173180.
 4.
 S. L. G. Choi, Covering the set of integers by congruence classes of distinct moduli, Math. Comput. 25(1971), 885895. MR 45:6744
 5.
 F. Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29(1975), 7981. MR 51:12758
 6.
 P. Erd\H{o}s, On integers of the form and some related problems, Summa Brasil. Math. 2(194751), 113123. MR 13:437i
 7.
 R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, New York, 1994. MR 96e:11002
 8.
 N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 57(1934), 668678.
 9.
 K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3(1892), 265284.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
11A07,
11B25
Retrieve articles in all journals
with MSC (2000):
11A07,
11B25
Additional Information
YongGao Chen
Affiliation:
Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of China
Email:
ygchen@pine.njnu.edu.cn
DOI:
http://dx.doi.org/10.1090/S0002993999054829
PII:
S 00029939(99)054829
Received by editor(s):
July 20, 1998
Published electronically:
November 23, 1999
Additional Notes:
This research was supported by the Fok Ying Tung Education Foundation and the National Natural Science Foundation of China, Grant No 19701015
Communicated by:
David E. Rohrlich
Article copyright:
© Copyright 2000
American Mathematical Society
