Uniqueness of the least-energy solution

for a semilinear Neumann problem

Author:
Massimo Grossi

Journal:
Proc. Amer. Math. Soc. **128** (2000), 1665-1672

MSC (1991):
Primary 35J70

DOI:
https://doi.org/10.1090/S0002-9939-99-05491-X

Published electronically:
October 18, 1999

MathSciNet review:
1694340

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the least-energy solution of the problem

where is a ball, and if , if , is unique (up to rotation) if is small enough.

**[AR]**A. Ambrosetti and P. H. Rabinowitz, ``*Dual variational methods in critical point theory and applications*'', J Funct. Anal.**14**, 349-381, (1973). MR**51:6412****[BDS]**P. Bates, E.N. Dancer and J. Shi, ``*Multi-spike stationary solutions on the Cahn-Hilliard equation in higher dimension and instability*'', preprint.**[D]**E.N. Dancer, ``*On the uniqueness of the positive solution of a singularly perturbed problem*'', Rocky Mountain Journal of Mathematics**25**(1995), 957-975. MR**96j:35021****[DY]**E.N. Dancer and S. Yan, ``*Multipeak solutions for a singularly perturbed Neumann problem*'' (to appear).**[GNN]**B. Gidas, W.N. Ni and L. Nirenberg, ``*Symmetry of positive solutions of nonlinear elliptic equation in*'', Advances in Math. Studies**7 A**, 369-402, (1981). MR**84a:35083****[GT]**D. Gilbarg and N. Trudinger, ``*Elliptic partial differential equations of second order*'', Springer Verlag (1983). MR**86c:35035****[Gu]**C.Gui, ``*Multipeak solutions for a semilinear Neumann problem*'', Duke Math. J.**84**, 739-769, (1996). MR**97i:35052****[K]**M.K. Kwong, ``*Uniqueness of positive solutions of in*'', Arch. Rat. Mech. Anal.,**105**, 243-266, (1989). MR**90d:35015****[LN]**C.S. Lin and W.M. Ni, ``*On the diffusion coefficient of a semilinear Neumann problem, Calculus of Variations and Partial Differential Equations*'', S. Hildebrandt, D. Kinderlehrer and M. Miranda, eds., Lecture Notes in Math. 1340, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 160-174, (1988). MR**90d:35101****[LNT]**C.S. Lin, W.M. Ni and I. Takagi, ``*Large amplitude stationary solutions to a chemotaxis system*'', J. Diff. Eqns.**72**, 1-27, (1988). MR**89e:35075****[NT]**W.M. Ni and I. Takagi, ``*On the shape of Least Energy Solutions to a Semilinear Neumann Problem*'', Comm. Pure Math. Appl.,**Vol XLIV**, 819-851, (1991). MR**92i:35052****[W1]**Z.Q. Wang, ``*On the existence of multiple single-peaked solution for a semilinear Neumann problem*'', Arch. Rat. Mech. Anal.,**120**, 375-399, (1992). MR**93k:35109****[W2]**Z.Q. Wang, ``*Nonradial solutions of nonlinear Neumann problems in radially symmetric domains*'', Topology in Nonlinear analysis (Warsaw, 1994), 85-96, Banach Center Publications,**35**, Polish Acad. Sci., Warsaw, (1996). MR**98e:35075**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
35J70

Retrieve articles in all journals with MSC (1991): 35J70

Additional Information

**Massimo Grossi**

Affiliation:
Dipartimento di Matematica, Università di Roma “La Sapienza", P.le A. Moro 2, 00185, Roma, Italy

Email:
grossi@mat.uniroma1.it

DOI:
https://doi.org/10.1090/S0002-9939-99-05491-X

Keywords:
Uniqueness results,
semilinear elliptic equations,
Neumann problem

Received by editor(s):
July 9, 1998

Published electronically:
October 18, 1999

Additional Notes:
This research was supported by M.U.R.S.T. (Project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”)

Communicated by:
Lesley M. Sibner

Article copyright:
© Copyright 2000
American Mathematical Society