Editorial Information

To be published in the Proceedings, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Proceedings Editors solicit and encourage publication of worthy papers of length not exceeding 10 published pages. Published pages are the same size as those generated in the style files provided for $\text{AMS-L}\TeX$ or AMS-TEX.

Very short notes not to exceed two printed pages are also accepted, and appear under the heading Shorter Notes. Items deemed suitable include an elegant new proof of an important and well-known theorem, an illuminating example or counterexample, or a new viewpoint on familiar results. New results, if of a brief and striking character, might also be acceptable, though in general a paper which is merely very short will not be suitable for the Shorter Notes department.

As of February 29, 2000, the backlog for this journal was approximately 11 issues. This estimate is the result of dividing the number of manuscripts for this journal in the Providence office that have not yet gone to the printer on the above date by the average number of articles per issue over the previous twelve months, reduced by the number of issues published in four months (the time necessary for editing and composing a typical issue). In an effort to make articles available as quickly as possible, articles are posted to e-MATH individually soon after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. Two copies of the paper should be sent directly to the appropriate Editor and the author should keep a copy. IF an editor is agreeable, an electronic manuscript prepared in \TeX or $\text{L}\TeX$ may be submitted by pointing to an appropriate URL on a preprint or e-print server.

The first page of an article must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract should be at least one complete sentence, and at most 150 words. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc. The list of classifications is also available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/publications. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/. When the manuscript is submitted, authors should supply the editor with electronic addresses if available. These will be printed after the postal address at the end of each article.

Electronically prepared manuscripts. The AMS encourages electronically prepared manuscripts, with a strong preference for $\text{AMS-L}\TeX$. To this end, the Society has prepared $\text{AMS-L}\TeX$ author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, the AMS Author Handbook, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the $\text{AMS-L}\TeX$ style file and the \label and \ref
commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of TeX, using \LaTeX also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \LaTeX papers also move more efficiently through the production stream, helping to minimize publishing costs.

\LaTeX is the highly preferred format of TeX, but author packages are also available in \LaTeX. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \LaTeX or plain TeX are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \LaTeX users will find that \LaTeX is the same as \LaTeX with additional commands to simplify the typesetting of mathematics, and users of plain TeX should have the foundation for learning \LaTeX.

Authors may retrieve an author package from e-MATH starting from \url{www.ams.org/tex/} or via FTP to \url{ftp.ams.org} (login as \textit{anonymous} and enter username as password). The author package can also be obtained free of charge by sending email to \url{pub@ams.org} (Internet) or from the Publication Division, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When requesting an author package, please specify \LaTeX or \LaTeX, Macintosh or IBM (3.5) format, and the publication in which your paper will appear. Please be sure to include your complete mailing address.

At the time of submission, authors should indicate if the paper has been prepared using \LaTeX or \LaTeX and provide the Editor with a paper manuscript that matches the electronic manuscript. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper manuscript to the Editor, who will forward a copy to the Providence office. Editors will require authors to send their electronically prepared manuscripts to the Providence office in a timely fashion. Electronically prepared manuscripts can be sent via email to \url{pub-submit@ams.org} (Internet) or on diskette to the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When sending a manuscript electronically, please be sure to include a message indicating in which publication the paper has been accepted.

No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available at \url{www.ams.org/jourhtml/graphics.html}. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

Secure manuscript tracking on the Web and via email. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and
Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/ or via email sent to mstrack-query@ams.org. To access by email, on the subject line of the message simply enter the AMS ID and Article ID. To track more than one manuscript by email, choose one of the Article IDs and enter the AMS ID and the Article ID followed by the word all on the subject line. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to proc-query@ams.org.

TeX files available. Beginning with the January 1992 issue of the Bulletin and the January 1996 issues of Transactions, Proceedings, Mathematics of Computation, and the Journal of the AMS, TeX files can be downloaded from e-MATH, starting from www.ams.org/journals/. Authors without Web access may request their files at the address given below after the article has been published. For Bulletin papers published in 1987 through 1991 and for Transactions, Proceedings, Mathematics of Computation, and the Journal of the AMS papers published in 1987 through 1995, TeX files are available upon request for authors without Web access by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The TeX file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. **Note:** Because TeX production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, TeX files cannot be guaranteed to run through the author’s version of TeX without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s TeX environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to journals-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248.
Editors

Authors are requested to send papers directly to the appropriate Editor (the one whose area of responsibility and expertise, as described below, most closely approximates the subject field of the manuscript). Only when in doubt about an appropriate Editor, should manuscripts be sent to the Coordinating Editor responsible for the area in mathematics most closely connected to the paper. If in doubt about the area, send the manuscript to the Managing Editor, to whom all other communication about the journal should also be addressed. (All addresses should include the line “Department of Mathematics”, unless another department is indicated.)

Managing Editor: Clifford J. Earle, Jr., Cornell University, Malott Hall, Ithaca, NY 14853-4201; e-mail: cliff@math.cornell.edu

1. ODE, PDE, GLOBAL ANALYSIS, AND DYNAMICAL SYSTEMS
 Coordinating Editor: Linda Keen, CUNY-Lehman College, Bronx, NY 10468; e-mail: linda@alpha.lehman.cuny.edu; keen@bers.gc.cuny.edu
 Partial differential equations, David S. Tartakoff, University of Illinois at Chicago, Chicago, IL 60607; e-mail: dst@uic.edu
 Dynamical systems and ergodic theory, Michael Handel, Department of Mathematics and Computer Science, Herbert Lehman College (CUNY), Bronx, NY 10468-1589; e-mail: michael@alpha.lehman.cuny.edu
 Ordinary differential equations and special functions, Carmen C. Chicone, University of Missouri, Columbia, MO 65211-0001; e-mail: carmen@chicone.math.missouri.edu
 Global analysis, Jozef Dodziuk, Ph.D. Program in Mathematics, Graduate School and University Center (CUNY), 33 West 42nd Street, New York, NY 10036-8099; e-mail: jdodziuk@gc.cuny.edu

2. LIE GROUPS, TOPOLOGY, AND GEOMETRY
 Coordinating Editor: Ronald A. Fintushel, Michigan State University, East Lansing, MI 48824-1027; e-mail: ronfint@math.msu.edu
 Topological groups and Lie groups (symmetric spaces), Rebecca Herb, University of Maryland, College Park, MD 20742; e-mail: rah@math.umd.edu
 Riemannian geometry (including affine, pseudo-Riemannian, contact, classical, and Lorentzian geometries), Wolfgang Ziller, University of Pennsylvania, Philadelphia, PA 19104-6317; e-mail: wziller@math.upenn.edu
 Geometric analysis (geometric PDE, minimal surfaces and harmonic maps), Bennett Chow, School of Mathematics, University of Minnesota, Minneapolis, MN 55455; e-mail: bchow@math.umn.edu
 Algebraic topology, Ralph Cohen, Stanford University, Stanford, CA 94305-2125; e-mail: ralph@math.stanford.edu
 Set-theoretic and general topology, Alan Dow, York University, North York, Ontario, Canada M3J 1P3; e-mail: dow@mathstat.yorku.ca
 Low dimensional topology, gauge theory, 4-manifolds, Ronald A. Fintushel
 Complex and Kähler geometry, Mohan Ramachandran, State University of New York at Buffalo, Buffalo, NY 14214-3093; e-mail: ramac-m@newton.math.buffalo.edu

3. ANALYSIS AND OPERATOR THEORY
 Coordinating Editor: Eric Bedford, Indiana University, Bloomington, IN 47405-5701; e-mail: bedford@indiana.edu
 One complex variable and potential theory, Juha M. Heinonen, University of Michigan, Ann Arbor, MI 48109-1109; e-mail: PAMS1@math.lsa.umich.edu
 Several complex variables, Steven R. Bell, Purdue University, West Lafayette, IN 47907-1395; e-mail: bell@math.purdue.edu
Linear and nonlinear functional analysis, Jonathan M. Borwein, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; e-mail: jborwein@cecm.sfu.ca

Banach spaces and linear functional analysis, N. Tomczak-Jaegermann, University of Alberta, Edmonton, AB, Canada T6G 2G1; e-mail: ntomczak@math.ualberta.ca; nicole.tomczak@ualberta.ca

Operator Theory, Joseph A. Ball, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; e-mail: ball@math.vt.edu

Operator algebras and wavelets, David R. Larson, Texas A&M University, College Station, TX 77843-3368; e-mail: larson@math.tamu.edu

Geometric measure theory and classical real analysis, David Preiss, University College London, Gower Street, London WC1E 6BT, UK; e-mail: dp@math.ucl.ac.uk

Harmonic analysis, Christopher D. Sogge, Johns Hopkins University, Baltimore, MD 21218; e-mail: sogge@jhu.edu

Analytic number theory and automorphic forms, Dennis A. Hejhal, School of Mathematics, University of Minnesota, Minneapolis, MN 55455-0488; e-mail: hejhal@math.umn.edu

4. ALGEBRA, NUMBER THEORY, COMBINATORICS, AND LOGIC

Coordinating Editor: Lance W. Small, University of California San Diego, La Jolla, CA 92093-0112; e-mail: lwsmall@ucsd.edu

General number theory, David E. Rohrlich, Boston University, Boston, MA 02215-2411; e-mail: rohrlich@math.bu.edu

General algebra, Lance W. Small

Commutative algebra, Wolmer V. Vasconcelos, Rutgers University, New Brunswick, NJ 08903-2101; e-mail: vasconce@math.rutgers.edu

Group theory, Stephen D. Smith, University of Illinois at Chicago, Chicago, IL 60607; e-mail: smiths@math.uic.edu

Algebraic geometry, Michael Stillman, Cornell University, Malott Hall, Ithaca, NY 14853-4201; e-mail: mike@math.cornell.edu

Combinatorics, John R. Stembridge, University of Michigan, Ann Arbor, MI 48109-1109; e-mail: jrs@math.lsa.umich.edu

Analytic number theory and automorphic forms, Dennis A. Hejhal, School of Mathematics, University of Minnesota, Minneapolis, MN 55455-0488; e-mail: hejhal@math.umn.edu

Logic and foundations, Carl G. Jockusch, Jr., University of Illinois, 1409 W. Green St., Urbana, IL 61801-2917; e-mail: jockusch@math.uiuc.edu

Lie algebras, Dan M. Barbasch, Cornell University, Malott Hall, Ithaca, NY 14853-4201; e-mail: barbasch@math.cornell.edu

Noncommutative rings, Ken Goodearl, University of California, Santa Barbara, CA 93106; e-mail: goodearl@math.ucsb.edu

5. APPLIED MATHEMATICS, PROBABILITY, AND STATISTICS

Coordinating Editor: Mark J. Ablowitz, Department of Applied Mathematics, Campus Box 526, University of Colorado, Boulder, CO 80309-0526; e-mail: markjab@newton.colorado.edu

Probability, Claudia M. Neuhauser, School of Mathematics, University of Minnesota, Minneapolis, MN 55455; e-mail: nhauser@math.umn.edu

Statistics, Richard A. Davis, Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877; e-mail: rdavis@stat.colostate.edu
Applied mathematics, David Sharp, Theoretic Division, Los Alamos National Laboratory MSB285, Los Alamos, NM 87545; e-mail: dhs@lanl.gov

Hyperbolic partial differential equations, Suncica Canic, University of Houston, Houston, TX 77204-3476; e-mail: canic@math.uh.edu
(Continued from back cover)

Emmanuel Lesigne, Almost sure central limit theorem for strictly stationary processes .. 1751

Ka-Sing Lau and You Xu, On the boundary of attractors with non-void interior 1761

Ondřej Zindulka, Dimension zero vs measure zero 1769

M. Cherpion and C. De Coster, Existence of solutions for first order singular problems ... 1779

Jan Kristensen, On conditions for polyconvexity 1793

Craig A. Nolder, An L^p definition of interpolating Blaschke products 1799

Giovanni Stegel, An uncertainty principle for convolution operators on discrete groups .. 1807

Scott F. Saccone, Function theory in spaces of uniformly convergent Fourier series 1813

Jih-Hsin Cheng, Rigidity of automorphisms and spherical CR structures 1825

D. GEOMETRY

Seongtag Kim, An obstruction to the conformal compactification of Riemannian manifolds ... 1833

G. TOPOLOGY

Janusz J. Charatonik, Włodzimierz J. Charatonik, and Paweł Krupski, Dendrites and light open mappings .. 1839

András I. Stipsicz, Chern numbers of certain Lefschetz fibrations 1845

Santos Asin Lares, An inductive explicit construction of $*$-products on some Poisson manifolds .. 1853

Tatsuya Tsukamoto, Clasp-pass move and Vassiliev invariants of type three for knots ... 1859

C. McA. Gordon, Y-Q. Wu, and X. Zhang, Non-integral toroidal surgery on hyperbolic knots in S^3 ... 1869

SHORTER NOTES

A. V. Arhangel’skiǐ, On condensations of C_p-spaces onto compacta 1881
A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

Keiji Oguiso and De-Qi Zhang, On Vorontsov’s Theorem on K3 surfaces with non-symplectic group actions ... 1571
W. Dale Brownawell and Laurent Denis, Linear independence and divided derivatives of a Drinfeld module II 1581
Stefan Breulmann and Michael Kuss, On a conjecture of Duke–Imamoğlu ... 1595
Stuart A. Steinberg, On the scarcity of lattice-ordered matrix algebras II ... 1605
Yong-Gao Chen, On integers of the form $2^k \pm p_1^{a_1} p_2^{a_2} \ldots p_r^{a_r}$... 1613
Francesca Tartarone, Integer-valued polynomials over Krull-type domains and Prüfer γ-multiplication domains ... 1617
S. Akbari and M. Mahdavi-Hezavehi, Normal subgroups of $GL_n(D)$ are not finitely generated ... 1627
Paola Cellini, A characterization of total reflection orders .. 1633
Winfried Kohnen and Jyoti Sengupta, Nonvanishing of symmetric square L-functions of cusp forms inside the critical strip 1641
Joachim Kupsch and Oleg G. Smolyanov, Hilbert norms for graded algebras .. 1647

B. ANALYSIS

Stanislav Krugliak and Yuriĭ Samoǐlenko, On the complexity of description of representations of \ast-algebras generated by idempotents ... 1655
Massimo Grossi, Uniqueness of the least-energy solution for a semilinear Neumann problem ... 1665
S. Hill, K. S. Moore, and W. Reichel, Existence and uniqueness theorems for singular anisotropic quasilinear elliptic boundary value problems 1673
Hiroshi Koshimizu and Kiyoshi Takeuchi, Extension theorems for the distribution solutions to D-modules with regular singularities ... 1685
Kōtarō Tanahashi and Atsushi Uchiyama, The Furuta inequality in Banach \ast-algebras .. 1691
James E. Joseph and Myung H. Kwack, A generalization of a theorem of Heins .. 1697
Raymond Mortini, Interpolating sequences in the spectrum of H^∞ ... 1703
G. Gát, On the divergence of the $(C,1)$ means of double Walsh-Fourier series ... 1711
Tilmann Gneiting, Kuttner’s problem and a Pólya type criterion for characteristic functions ... 1721
Nguyê̂n Viêt Anh, The Lu Qi-Keng conjecture fails for strongly convex algebraic complete Reinhardt domains in \mathbb{C}^n ($n \geq 3$) .. 1729
Guia Medolla and Alberto G. Setti, Long time heat diffusion on homogeneous trees ... 1733

(Continued on inside back cover)