Endomorphisms of the plane sending

linear coordinates to coordinates

Authors:
Charles Ching-An Cheng and Arno van den Essen

Journal:
Proc. Amer. Math. Soc. **128** (2000), 1911-1915

MSC (1991):
Primary 13B25, 13F20, 14E09, 16W20

Published electronically:
February 25, 2000

MathSciNet review:
1653437

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a field of characteristic zero. We show that an endomorphism of which sends each linear coordinate to a coordinate is an automorphism of .

**[1]**Kossivi Adjamagbo and Arno van den Essen,*A resultant criterion and formula for the inversion of a polynomial map in two variables*, J. Pure Appl. Algebra**64**(1990), no. 1, 1–6. MR**1055017**, 10.1016/0022-4049(90)90002-Y**[2]**A. D. R. Choudary and A. Dimca,*Complex hypersurfaces diffeomorphic to affine spaces*, Kodai Math. J.**17**(1994), no. 2, 171–178. MR**1282208**, 10.2996/kmj/1138039958**[3]**Arno van den Essen and Vladimir Shpilrain,*Some combinatorial questions about polynomial mappings*, J. Pure Appl. Algebra**119**(1997), no. 1, 47–52. MR**1456093**, 10.1016/S0022-4049(96)00043-6**[4]**R. Feßler,*A proof of the two dimensional Markus-Yamabe stability conjecture*, Annales Polonici Mathematici**62**(1995), 45-75.**[5]**A. A. Glutsuk,*The complete solution of the Jacobian problem for vector fields on the plane*, Communications of the Moscow Mathematical Society, Russian Math. Surveys**49**(1994), 185-186, Translated in Uspekhi Mat. Nauk,**3**(1994).**[6]**Carlos Gutiérrez,*A solution to the bidimensional global asymptotic stability conjecture*, Ann. Inst. H. Poincaré Anal. Non Linéaire**12**(1995), no. 6, 627–671 (English, with English and French summaries). MR**1360540****[7]**Z. Jelonek,*A solution of the problem of van den Essen and Shpilrain*, IMUJ, preprint 1996 /19 Krakow.**[8]**Shulim Kaliman,*Exotic structures on 𝐂ⁿ and 𝐂*-action on 𝐂³*, Complex analysis and geometry (Trento, 1993) Lecture Notes in Pure and Appl. Math., vol. 173, Dekker, New York, 1996, pp. 299–307. MR**1365979****[9]**James H. McKay and Stuart Sui Sheng Wang,*An inversion formula for two polynomials in two variables*, J. Pure Appl. Algebra**40**(1986), no. 3, 245–257. MR**836651**, 10.1016/0022-4049(86)90044-7**[10]**A. Mikhalev, J. Yu and A. Zolotykh,*Images of coordinate polynomials*, Algebra Colloquium**4**(1997), 159-162, preprint 1997.**[11]**Patrick J. Rabier,*On components of polynomial automorphisms in two variables*, Comm. Algebra**24**(1996), no. 3, 929–937. MR**1374646**, 10.1080/00927879608825612

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
13B25,
13F20,
14E09,
16W20

Retrieve articles in all journals with MSC (1991): 13B25, 13F20, 14E09, 16W20

Additional Information

**Charles Ching-An Cheng**

Affiliation:
Department of Mathematics, Oakland University, Rochester, Michigan 48309

Email:
cheng@oakland.edu

**Arno van den Essen**

Affiliation:
Department of Mathematics, University of Nijmegen, Nijmegen, The Netherlands

Email:
essen@sci.kun.nl

DOI:
https://doi.org/10.1090/S0002-9939-00-05236-9

Keywords:
Jacobian conjecture,
automorphism,
endomorphism,
derivation,
algebraically closed field,
coordinate

Received by editor(s):
December 12, 1997

Received by editor(s) in revised form:
September 1, 1998

Published electronically:
February 25, 2000

Communicated by:
Wolmer V. Vasconcelos

Article copyright:
© Copyright 2000
American Mathematical Society