UNIVERSAL UNIFORM EBERLEIN COMPACT SPACES

M. BELL

(Communicated by Alan Dow)

ABSTRACT. A universal space is one that continuously maps onto all others of its own kind and weight. We investigate when a universal Uniform Eberlein compact space exists for weight \(\kappa \). If \(\kappa = 2^{\omega_1} \), then they exist whereas otherwise, in many cases including \(\kappa = \omega_1 \), it is consistent that they do not exist. This answers (for many \(\kappa \) and consistently for all \(\kappa \)) a question of Benyamini, Rudin and Wage of 1977.

1. INTRODUCTION

Let \(\mathcal{C} \) be a class of compact Hausdorff spaces. The weight of a space \(X \) is the least cardinality of a base for \(X \). A universal element of \(\mathcal{C} \) for weight \(\kappa \) is a space \(X \in \mathcal{C} \) with weight \(\kappa \) such that every \(Y \in \mathcal{C} \) of weight \(\leq \kappa \) is a continuous image of \(X \). In topology, the two most famous examples of universal elements are: the Cantor space \(2^\omega \) is a universal compact space for weight \(\omega \) and, under the Continuum Hypothesis, \(\beta \omega \setminus \omega \) is a universal compact space for weight \(\omega_1 \). Regarding the second example, we mention that Shelah \cite{Sh84, Sh90} has shown that it is consistent that there is no universal boolean algebra (one that contains copies of all others as subalgebras) of size \(\omega_1 \); hence by duality, it follows that it is consistent that there is no universal compact space of weight \(\omega_1 \).

An Eberlein compact space (abbreviated EC) is one that is homeomorphic to a weakly compact subspace of a Banach space. A Uniform Eberlein compact space (abbreviated UEC) is one that is homeomorphic to a weakly compact subspace of a Hilbert space. EC spaces have been extensively studied by analysts and topologists; for a good introduction see the survey article of Negrepontis \cite{Ng84}. Benyamini, Rudin and Wage \cite{BRW77} raised the questions: for which \(\kappa \) do there exist universal EC and universal UEC spaces for weight \(\kappa \)? Argyros and Benyamini \cite{Ab87} have shown that if \(\kappa^{\omega_1} = \kappa \) or \(\kappa = \omega_1 \), then a universal EC for weight \(\kappa \) does not exist, whereas if \(\kappa \) is a strong limit of countable cofinality, then it does exist. Hence under GCH, they exist iff \(\text{cf}(\kappa) = \omega \). In section 3 we prove that if \(\kappa = 2^{\omega_1} \), then a universal UEC space exists for weight \(\kappa \) (hence under GCH, universal UEC spaces exist for all weights \(\kappa \)). In section 4 we note that it follows from results of Shelah \cite{Sh84, Sh90} on universal graphs that it is consistent that universal UEC spaces...
Proof. Assume that \(f \) is a closed subspace of \(X \). We denote the clopen algebra of all clopen subsets of \(X \) by \(CO(X) \). A boolean space is a compact Hausdorff space such that \(CO(X) \) is a basis. If \(B \) is a boolean algebra, then \(st(B) \) is the space of all ultrafilters of \(B \). The weight of \(st(B) \) is the cardinality or size of \(B \). When we say “duality”, we refer to the well-known equivalences of boolean spaces and continuous maps and boolean algebras and homomorphisms.

2. Uniform Eberleins and c-algebras

Let \(\alpha \kappa = \kappa \cup \{\infty\} \) be the one-point compactification of the discrete space \(\kappa \) and let \(\alpha \kappa^\omega \) be the \(\omega \)th power of \(\alpha \kappa \). The following theorem is a key to our investigation.

Theorem 2.1 (Benyamini, Rudin and Wage [BRW77]). \(X \) is a UEC space of weight \(\leq \kappa \) iff \(X \) is a Hausdorff continuous image of a closed subspace of \(\alpha \kappa^\omega \).

So, if there is a universal UEC space for weight \(\kappa \), then there is one that is a closed subspace of \(\alpha \kappa^\omega \). Moreover, to construct a universal UEC for weight \(\kappa \), it suffices to find a closed subspace of \(\alpha \kappa^\omega \) that continuously maps onto all other closed subspaces. We decide to work in the realm of boolean algebras.

A c-algebra is a boolean algebra \(B \) which has a generating set \(\bigcup_{n<\omega} B_n \) satisfying

a) each \(B_n \) consists of elements pairwise disjoint and \(B_n \cap B_m = \emptyset \) for \(n \neq m \) and

b) the nice property that \(\forall F \neq 1 \) for each finite \(F \subset \bigcup_{n<\omega} B_n \). When we mention a c-algebra \(B \), we always have in mind a fixed generating set which we denote by \(\operatorname{gen}(B) = \bigcup_{n<\omega} B_n \) and which satisfies a) and b) and we let \(\pi : \operatorname{gen}(B) \to \omega \) be defined by \(\pi(x) = n \) where \(x \in B_n \).

The next theorem was, in essence, communicated to the author by Petr Simon. We say that a family \(B \) of subsets of a space \(X \) is \(T_\theta \)-separating if whenever \(x \neq y \) are points of \(X \), then there exists \(B \in B \) such that \(B \) contains exactly one of \(x, y \). By duality, a generating set \(G \) of a boolean algebra \(B \) corresponds to a \(T_\theta \)-separating family of clopen subsets of \(X = st(B) \).

Theorem 2.2. \(X \) is homeomorphic to a closed subspace of \(\alpha \kappa^\omega \) iff \(X \) is a boolean space and \(CO(X) \) is a c-algebra of size at most \(\kappa \).

Proof. Assume that \(X \) is a closed subspace of \(\alpha \kappa^\omega \). For each \(n \) and for each \(\alpha < \kappa \), put \(B_\alpha^n = \{ f \in X : f(n) = \alpha \} \). The family \(B = \{ B_\alpha^n : \text{all } n \text{ and all } \alpha \} \) generates \(CO(X) \). Fix a point \(x \in X \). For each \(n \) such that \(x(n) = \infty \) put \(B_{3n} = \{ B_\alpha^n : \alpha < \kappa \} \) and for each \(n \) such that \(x(n) \neq \infty \) put \(B_{3n+1} = \{ X \setminus B_\alpha^n : x(n) = \alpha \} \) and \(B_{3n+2} = \{ B_\beta^n : \beta \neq \alpha \} \). Then \(\bigcup_{n<\omega} B_n \) generates \(CO(X) \), has the nice property, each \(B_n \) consists of elements pairwise disjoint, and we can thin each \(B_n \) to get \(\{ B_n : n < \omega \} \) a pairwise disjoint family; so, \(CO(X) \) is a c-algebra of size at most \(\kappa \).

Assume \(X \) is a boolean space and that \(CO(X) \) is a c-algebra of size at most \(\kappa \) and let \(\bigcup_{n<\omega} B_n \) be a generating set of \(CO(X) \) witnessing this. For each \(n \), list \(B_n \) as \(\{ B_\alpha^n : \alpha \in S_n \subset \kappa \} \). Define \(\phi : X \to \alpha \kappa^\omega \) by \(\phi(x)(n) = \infty \) if \(x \notin \bigcup_{\alpha \in S_n} B_\alpha^n \).
and \(\phi(x)(n) = \alpha \) if \(x \in B_n^\alpha \). \(\phi \) is an embedding because \(\bigcup_{n<\omega} B_n \) is a \(T_0 \)-separating family.

We require some c-algebra notions. A c-algebra \(A \) is a c-subalgebra of \(B \), denoted by \(A < B \), if \(A \) is a boolean subalgebra of \(B \) and \(A_n \subset B_n \) for each \(n \). A function \(i : A \to B \) between two c-algebras is a c-embedding if \(i \) is an embedding of boolean algebras and \(i[A_n] \subset B_n \) for each \(n \); if, in addition, \(i[A_n] = B_n \) for each \(n \), then \(i \) is a c-isomorphism. \(U \) is a universal c-algebra of size \(\kappa \) if every c-algebra of size \(\leq \kappa \) can be c-embedded into \(U \).

A nut \(N \) of a c-algebra \(B \) is an element of \(B \) that is given by a description denoted by \((N^+, N^-) \) so that \(N = \bigwedge N^+ - \bigvee N^- \), where \(N^+ \) and \(N^- \) are disjoint finite subsets of \(\text{gen}(B) \). Since \(\text{gen}(B) \) generates \(B \), knowledge of precisely which nuts are 0 completely determines (up to c-isomorphism) the c-algebra \(B \). A fact that we will use in section 3 is that since a c-algebra \(B \) has the nice property, if \(N \) is a nut of \(B \) and \(N = 0 \), then \(N^+ \neq \emptyset \).

We say that \(A \) is a closed c-subalgebra of a c-algebra \(B \), denoted by \(A <_{c} B \), if \(A < B \) and

1. whenever \(N \) is a nut of \(A \) and \(F \) is a finite subset of \(\text{gen}(B) \) and \(N \leq \bigvee F \), then there exists a finite subset \(G \) of \(\text{gen}(A) \) such that \(N \leq \bigvee G \) and \(\pi[G] = \pi[F] \),

2. whenever \(N \) is a nut of \(A \) and \(F \) is a finite subset of \(\text{gen}(B) \) and \(N \wedge \bigvee F \neq 0 \), then there exists a finite subset \(G \) of \(\text{gen}(A) \) such that \(N \wedge \bigvee G \neq 0 \) and \(\pi[G] = \pi[F] \).

To use closed c-subalgebras (i.e. elementarity) in our proof of Lemma 3.1 was suggested to the author by Alan Dow. Three important properties of \(A <_{c} B \) are:

- \(A < B \) imply that there exists \(C <_{c} B \) such that \(A < C \) and \(|C| = |A| \),
- \(A <_{c} B \) and \(A < C < B \) imply that \(A <_{c} C \),
- if \(A_\alpha < A_\beta \) for \(\alpha < \beta < \kappa \) and for each \(\alpha < \kappa \), \(A_\alpha <_{c} B \), then \(\bigcup_{\alpha<\kappa} A_\alpha <_{c} B \).

To get a universal UEC space for certain weights \(\kappa \), we will construct a universal c-algebra \(U \) of size \(\kappa \), then, by Theorem 2.2 and Theorem 5.1 \(\text{st}(U) \) will be our universal UEC. Whether this is necessary for the existence of universal UEC spaces of weight \(\kappa \) is not known. Recent research of Dzamonja [Dz08] gives sufficient conditions for the non-existence of universal c-algebras of weight \(\kappa \) (in the absence of GCH).

3. Existence of universal uniform Eberleins

It is convenient and economical to decree that \(\emptyset \) is a c-algebra and that for any c-algebra \(B \), \(\emptyset <_{c} B \) and \(\emptyset : \emptyset \to B \) is a c-embedding.

Lemma 3.1 (Amalgamation Lemma). Let \(B \) and \(C \) be c-algebras. If \(A <_{c} C \) and \(i : A \to B \) is a c-embedding, then there exists a c-algebra \(E \) such that \(B < E \), \(|E| \leq |B| + |C| \), and there exists a c-embedding \(j : C \to E \) such that \(j \upharpoonright A = i \).

Proof. Without loss of generality we assume that \(i \) is an inclusion, so \(A < B \) (therefore, \(A_n \subset B_n \) for each \(n \)) and we assume that \((\text{gen}(C) \setminus \text{gen}(A)) \cap B = \emptyset \). Define, for each \(n \), \(E_n = (C_n \setminus A_n) \cup B_n \). Our goal is to define a c-algebra structure \(E \) with \(\text{gen}(E) = \bigcup_{n<\omega} E_n \) which simultaneously extends the c-algebra structure of
be the ideal in $B \ast D$ generated by $I_1 \cup I_2$ where $I_1 = \{(x, y) : x \in B_n \setminus A_n$ and $y \in C_n \setminus A_n$, for some $n\}$ and $I_2 = \{(N, M) : N$ is a nut of A and M is a nut of D and $N \cap M = 0 \in C\}$. Put $E = B \ast D/I$ and let $\phi : B \ast D \to B \ast D/I$ be the quotient homomorphism. E is generated by $\bigcup_n E_n$ where $E_n = \{\phi(x, 1) : x \in B_n \} \cup \{\phi(1, y) : y \in C_n \setminus A_n\}$. I_1 ensures that, for each n, E_n consists of elements pairwise disjoint.

Claim 1. E is a c-algebra.

Proof of Claim. We must check that E has the nice property. Striving for a contradiction, assume that $\bigvee_{i<n} \phi(x_i, 1) \lor \bigvee_{j<m} \phi(1, y_j) = 1$ where $x_i \in \text{gen}(B)$ and $y_j \in \text{gen}(D)$. Choose $p,q < \omega$ such that

\[(*) \quad \bigvee_{i<n} (x_i, 1) \lor \bigvee_{j<m} (1, y_j) \lor \bigvee_{k<p} (N_k, M_k) \lor \bigvee_{l<q} (z_l, w_l) = 1\]

where each $(N_k, M_k) \in I_2$ and $(z_l, w_l) \in I_1$. Since $N_k \cap M_k = 0$ in C and C has the nice property, we can choose $r_k \in (N_k \cap M_k)^+ = N_k^+ \cup M_k^+$. So $(N_k, M_k) \leq (r_k, 1)$ if $r_k \in N_k^+$ or $(N_k, M_k) \leq (1, r_k)$ if $r_k \in M_k^+$. As C has the nice property, $c = \bigvee_{j<m} y_j \lor \bigvee_{k<p} \{r_k : k < p$ and $r_k \in M_k^+\} \lor \bigvee_{l<q} w_l < 1$. As B has the nice property, $b = \bigvee_{i<n} x_i \lor \bigvee_{k<p} \{r_k : k < p$ and $r_k \in N_k^+\} \lor \bigvee_{l<q} z_l < 1$. Thus, $(1 - b, 1 - c) \neq 0$ but is disjoint from the left-hand side of equation $(*)$.

Claim 2. $B < E$ in the form $\{\phi(x, 1) : x \in B\}$.

Proof of Claim. By virtue of the free product, if N is a nut of B and $N \neq 0$, then $\phi(N, 1) = 0$. We must show that if N is a nut of B and $N \neq 0$, then $\phi(N, 1) \neq 0$. Assume not, and let $N \neq 0$ be a nut of B such that

\[(** \quad (N, 1) \leq \bigvee_{i<n} (N_i, M_i) \lor \bigvee_{j<m} (x_j, y_j)\]

where each $(N_i, M_i) \in I_2$ and $(x_j, y_j) \in I_1$ and $n + m$ is the least k such that there exist k elements of $I_1 \cup I_2$ whose join is $\geq (P, 1)$ for some nut P of B with $P \neq 0$. By minimality of $n + m$, we get that $N \leq \bigwedge_{i<n} N_i \land \bigwedge_{j<m} x_j$ in B (otherwise, there exists i such that $N - N_i \neq 0$ or $N - x_i \neq 0$ and either possibility yields a non-0 nut P of B such that $(P, 1)$ is \leq the join of 1 less element on the right-hand side of $(*)$. Also, $y = \bigvee_{i<n} M_i \lor \bigvee_{j<m} y_j = 1$ in D or else $(N, 1 - y) \neq 0$ but is disjoint from the right-hand side of $(** \quad (N, 1) \leq \bigvee_{i<n} (N_i, M_i) \lor \bigvee_{j<m} (x_j, y_j)\)$. Since each $i < n$, $N_i \leq M_i'$ (we use $'$ for complement) in C, we get that $\bigwedge_{i<n} N_i \leq \bigwedge_{i<n} M_i' \leq \bigvee_{j<m} y_j$ in C. As $A < C$ and $\bigwedge_{i<n} N_i$ is a nut of A, we can choose a finite $F \subseteq \text{gen}(A)$ such that $\pi[F] = \pi[\{y_j : j < m\}]$ and $\bigwedge_{i<n} N_i \leq \bigvee F$ in A. But, then $0 \neq N \leq \bigvee F \land \bigwedge_{j<m} x_j$ in B, which is a contradiction since for every $z \in F$ there exists $j < m$ such that z and y_j (and therefore x_j) are
in the same column B_n of B with $z \in A_n$ and $x_j \in B_n \setminus A_n$ and therefore $z \cap x_j = 0$ in B; hence $\bigvee F \land \bigwedge_{j<m} x_j = 0$ in B.

\textbf{Claim 3.} $C \leq E$ in the form $\{ \phi(x,1) : x \in A \} \cup \{ \phi(1,y) : y \in D \}$.

\textbf{Proof of Claim.} By virtue of the free product and I_2, if N is a nut of A and M is a nut of D and $N \land M = 0$, then $\phi(N,M) = 0$. We must show that if N is a nut of A and M is a nut of D and $N \land M \neq 0$, then $\phi(N,M) \neq 0$. Assume not and let N be a nut of A and let M be a nut of D such that $N \land M \neq 0$ in C and $(N,M) = \bigvee_{i<n} (N_i,M_i) \land \bigvee_{j<m} (x_j,y_j)$ where each $(N_i,M_i) \in I_2$ and $(x_j,y_j) \in I_1$. Since $N \land M \neq 0$ in C and for each $i < n$, $N_i \land M_i = 0$ in C, we get that $(N,M) - \bigvee_{i<n} (N_i,M_i) \neq 0$. As

\[(N,M) - \bigvee_{i<n} (N_i,M_i) = \bigvee_{k<p} (P_k,Q_k) \leq \bigvee_{j<m} (x_j,y_j) \]

where each P_k is a nut of A and Q_k is a nut of D, we get that there exists $k < p$ with $(P_k,Q_k) \neq 0$ and $(P_k,Q_k) \leq \bigvee_{j<m} (x_j,y_j)$. So, without loss of generality we can assume that $(N,M) \leq \bigvee_{j<m} (x_j,y_j)$. As before, let m be the least k such that there exist k elements of I_1 whose join is $\geq (P,Q)$ for some nut P of A and for some nut Q of D with $P \land Q \neq 0$ in C. By minimality of m, $0 \neq N \land M \leq \bigwedge_{j<m} y_j$.

Therefore, $N \land \bigwedge_{j<m} y_j \neq 0$. As $A \leq C$ and N is a nut of A, we can choose a finite $F \subset \text{gen}(A)$ such that $\pi[F] = \pi[[y_j : j < m]]$ and $N \land \bigwedge_{j<m} F \neq 0$. But, $N \leq \bigvee_{j<m} x_j$ and $\bigvee_{j<m} x_j \land \bigwedge_{j<m} F = 0$ which is a contradiction.

This completes the proof of our lemma.

The proofs of the following two results are standard procedures in model theory, but due to the asymmetry of our assumptions (we mix $A < B$ and $A < c B$) we were unable to find a theorem to quote, and so we present the proofs.

\textbf{Proposition 3.2.} Let $\lambda = \lambda^{<\kappa}$ and let B be a c-algebra of size $< \kappa$. Then there exists a c-algebra D of size λ such that $B < D$ and such that every c-embedding of any c-algebra A of size $< \kappa$ into D can be extended to a c-embedding of C, if C is any c-algebra of size $< \kappa$ with $A < c C$.

\textbf{Proof.} List all triples (X,Y,i) where Y is a c-algebra with $Y_n \subset \kappa \times \{ n \}$ for each n, $X \leq c Y$ and i is an injection of X into $\lambda \times \omega$ as $(X_\alpha,Y_\alpha,i_\alpha)_{\alpha < \kappa < \lambda}$ so that for each α, $i_\alpha[X_\alpha] \subset \alpha \times \omega$. In our listing we allow the degenerate cases where $X = i = \emptyset$ in order to start our embeddings. We can do this listing because $\lambda = \lambda^{<\kappa}$.

We will build a c-algebra structure D with $\text{gen}(D) = \lambda \times \omega$ by recursively constructing D_α with $\text{gen}(D_\alpha) = \lambda_\alpha \times \omega$ such that for $\alpha < \beta < \lambda$, $\alpha \leq \lambda_\alpha \leq \lambda_\beta$ and $D_\alpha < D_\beta$. To begin, let $\lambda_0 = |B|$ and make D_0 c-isomorphic to B. If α is a limit, put $\lambda_\alpha = \sup \{ \lambda_\beta : \beta < \alpha \}$ and $D_\alpha = \bigcup_{\beta < \alpha} D_\beta$. If $\alpha = \beta + 1$ is a successor, then we have D_β with $\text{gen}(D_\beta) = \lambda_\beta \times \omega$. If i_β is not a c-embedding of X_β into D_β, then put $\lambda_\alpha = \lambda_\beta$ and $D_\alpha = D_\beta$. If i_β is a c-embedding of X_β into D_β, then apply the Amalgamation Lemma [4.1] with $A = X_\beta$, $B = D_\beta$, $C = Y_\beta$ and $i = i_\beta$ to yield
a \(c \)-algebra \(E \) such that \(D_\beta < E, |E| \leq |D_\beta| + |Y_\beta| \) and \(i_\beta \) extends to \(Y_\beta \). Put \(D_\alpha = E \) and \(\lambda_\alpha = \) the first ordinal > \(\lambda_\beta \) that can accommodate the extra elements of \(\text{gen}(E) \).

Now, let \(D = \bigcup_{\alpha < \lambda} D_\alpha \). If \(A <_c C, |C| < \kappa \) and \(i : A \to D \) is a \(c \)-embedding, then we can identify \((A,C,i) \) with a \((X_\beta,Y_\beta,i_\beta) \) for some \(\beta < \lambda \) and at stage \(\alpha = \beta + 1 \), we extended \(i \) to \(Y_\beta = C \).

Theorem 4.1.

Proof. If \(\kappa = \kappa^c \), then there exists a universal \(c \)-algebra \(U \) of size \(\kappa \).

Proof. If \(\kappa = \kappa^c \), then let \(U \) be the \(D \) of the previous proposition with \(\lambda = \kappa \) and \(B = \emptyset \).

Otherwise, \(\kappa \) is a singular strong limit cardinal, so let \(\kappa = \text{sup}\{\kappa_\alpha : \alpha < \text{cf}(\kappa)\} \) where \(\alpha < \beta \) implies \(\kappa_\alpha < \kappa_\beta \), \(\alpha \) a limit implies \(\kappa_\alpha = \text{sup}\{\kappa_\beta : \beta < \alpha\} \), and \(\kappa_{\alpha+1} = 2^{\kappa_\alpha} \). By induction on \(\alpha < \text{cf}(\kappa) \), we construct \(c \)-algebras \(U_\alpha \) with, for each \(\alpha, U_\alpha \subseteq \kappa_\alpha \times \{\alpha\} \) such that \(\alpha < \beta \) implies \(U_\alpha < U_\beta \) and \(\alpha \) a limit implies \(U_\alpha = \bigcup_{\beta < \alpha} U_\beta \). For \(\alpha = \beta + 1 \), we apply the preceding proposition with \(B = U_\beta \) and put \(U_\alpha = \) the \(D \) of that proposition. Now, let \(U = \bigcup_{\alpha < \text{cf}(\kappa)} U_\alpha \).

In either case, to show that our \(U \) is universal, let \(A \) be a \(c \)-algebra of size \(\leq \kappa \). Write \(A \) as \(\bigcup_{\alpha < \text{cf}(\kappa)} A_\alpha \) where for each \(\alpha, A_\alpha = A, |A_\alpha| < \kappa, \alpha < \beta \) implies \(A_\alpha < A_\beta \) and \(\alpha \) a limit implies \(A_\alpha = \bigcup_{\beta < \alpha} A_\beta \). We then have that for \(\beta < \alpha, A_\beta <_c A_\alpha \). Finally, an induction up to \(\text{cf}(\kappa) \), using the preceding proposition, will embed \(A \) into \(U \).

4. **Non-existence of universal Uniform Eberleins**

\(G \subseteq [X]^2 \) (the doubletons of \(X \)) is called a **graph** on \(X \). A graph \(H \) on a subset \(Y \) of \(X \) is called a **subgraph** of \(G \) if \(H = G \cap [Y]^2 \). A graph \(H \) on a set \(Y \) **embeds** into a graph \(G \) on a set \(X \) if there exists a function \(i : Y \to X \) such that for all \(x,y \in Y, \{x,y\} \in H \iff \{i(x),i(y)\} \in G \). A **universal graph** of size \(\kappa \) is a graph \(G \) on a set \(X \) of size \(\kappa \) such that every graph on any set of size \(\leq \kappa \) embeds into \(G \).

Theorem 4.2. Let \(\mathcal{C} \) be a class of compact Hausdorff spaces containing all closed subspaces of \(\alpha \kappa \times \alpha \kappa \). Then, if there exists a universal element in \(\mathcal{C} \) for weight \(\kappa \), there exists a universal graph of size \(\kappa \).

Proof. Let \(X \) be a universal element in \(\mathcal{C} \) for weight \(\kappa \). Let \(G \) be the intersection graph on \(CO(X) \), i.e., for \(x \neq y \) in \(CO(X), \{x,y\} \in G \) iff \(x \cap y \neq \emptyset \). We claim that \(G \) is a universal graph of size \(\kappa \). To prove this, let \(H \) be any graph on an \(S \subseteq \kappa \). Consider the following closed subspace of \(\alpha \kappa \times \alpha \kappa, Y = \alpha \kappa \times \{\infty\} \cup \{\infty\} \times \alpha \kappa \cup \{(\alpha,\beta),\beta,\alpha) : \{\alpha, \beta) \in H \). Let \(\phi : X \to Y \) be a continuous surjection. For each \(\alpha < \kappa \), put \(B_\alpha = [\alpha \kappa \times \{\alpha\} \cup \{\alpha\} \times \alpha \kappa] \cap Y \). For each \(\alpha < \kappa, B_\alpha \subseteq CO(Y) \) and \(B_\alpha \cap B_\beta \neq \emptyset \) iff \(\beta, \alpha \in H \). So, the mapping \(i : S \to CO(X) \) defined by \(i(\alpha) = \phi^{-1}[B_\alpha] \) embeds \(H \) into \(G \).

Corollary 4.2. If \(V \) is a model with \(\lambda^{<\lambda} = \lambda < \kappa < \mu \) and \(P \) is a Cohen forcing that adds \(\mu \) Cohen subsets of \(\lambda \), then in the model \(V^P \) there is no universal UEC in the weight \(\kappa \) for any \(\kappa \) with \(\lambda < \kappa < \mu \). In particular, if we add \(\omega_2 \) Cohen reals to \(V \), then there is no universal UEC in the weight \(\omega_1 \).
Proof. Shelah \cite{Sh90} has shown that there is no universal graph of size κ in this model.

An additional result, just following from cardinal arithmetic, is the result of Kojman and Shelah \cite{KS92}, that if $\text{cf}(2^\kappa) \leq \kappa < 2^\lambda$, then there does not exist a universal graph of size κ; hence, there would be no universal UEC for this weight κ.

In conclusion, we mention one open problem: Does a universal UEC for weight κ not exist if κ is a singular cardinal which is not a strong limit?

References

\cite{KS92} M.Kojman and S.Shelah, *Nonexistence of Universal Orders in many Cardinals*, J. Symbolic Logic 57 No.3 (1992), 875-891. MR 94b:03064

\cite{Ng84} S.Negrepontis, *Banach Spaces and Topology*, Handbook of Set-Theoretic Topology, editors K.Kunen and J.Vaughan, North-Holland (1984), 1045-1142. MR 86i:46018

\cite{Sh90} S.Shelah, *Universal graphs without instances of CH: Revisited*, Israel J. Math. 70 No.1 (1990), 69-81. MR 94e:03048

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

E-mail address: mbell@cc.umanitoba.ca

URL: http://home.cc.umanitoba.ca/~mbell/