The Phillips properties

Authors:
Walden Freedman and Ali Ülger

Journal:
Proc. Amer. Math. Soc. **128** (2000), 2137-2145

MSC (1991):
Primary 46B20, 46B03; Secondary 46L05, 46J10

DOI:
https://doi.org/10.1090/S0002-9939-00-05703-8

Published electronically:
February 21, 2000

MathSciNet review:
1766719

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Banach space has the Phillips property if the canonical projection is sequentially weak-norm continuous, and has the weak Phillips property if is sequentially weak-weak continuous. We study both properties in connection with other geometric properties, such as the Dunford-Pettis property, Pelczynski's properties and (V), and the Schur property.

**[B-De]**J. Bourgain and F. Delbaen,*A class of special**spaces*, Acta Math.**145**(1981), 155-176. MR**82h:46023****[B-D]**J. Bourgain and J. Diestel,*Limited operators and strict cosingularity*, Math. Nachr.**119**(1984), 55-58. MR**86d:47024****[B]**S. W. Brown,*Weak sequential convergence in the dual of an algebra of compact operators*, J. Operator Theory**33**(1995), 33-42. MR**96h:47049****[C]**P. Cembranos,*The hereditary Dunford-Pettis property on*, Illinois J. Math.**31**(1987), 365-373. MR**88g:46028****[Ch]**C. Chu,*A note on scattered**-algebras and the Radon-Nikodym property*, J. London Math. Soc.**24**(1981), 533-536. MR**82k:46086****[D1]**J. Diestel,*Sequences and Series in Banach Spaces*, Springer-Verlag, New York, 1984. MR**85i:46020****[D2]**-,*A survey of results related to the Dunford-Pettis property*, Contemp. Math. 2, Amer. Math. Soc., 1980, pp. 15-60. MR**82i:46023****[Di]**J. Dixmier,*-algebras*, North-Holland, Amsterdam and New York, 1977. MR**56:16388****[GGMS]**N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer,*Some topological and geometric structures in Banach spaces*, Mem. Amer. Math. Soc.**70**(378) (1987). MR**89h:46024****[HWW]**P. Harmand, D. Werner, and W. Werner,*M-ideals in Banach spaces and Banach algebras*, Lecture Notes in Math. 1547, Springer-Verlag, 1993. MR**94k:46022****[HOR]**R. Haydon, E. Odell, and H.P. Rosenthal,*On certain classes of Baire-**functions with applications to Banach space theory*, Functional Analysis, Proceedings, Univ. of Texas at Austin, 1987-1989, Lecture Notes in Math. 1470, Springer-Verlag, 1991, pp. 1-35. MR**92h:46018****[K-O]**H. Knaust and E. Odell,*On**-sequences in Banach spaces*, Israel J. Math.**67**(1989), 153-169. MR**91d:46013****[L-U]**A. To-Ming Lau and A. Ülger,*Some geometric properties of the Fourier and Fourier Stieltjes algebras of locally compact groups, Arens regularity and related problems*, Trans. Amer. Math. Soc.**337**(1993), 321-359. MR**93g:22007****[P]**A. Pelczynski,*Banach spaces on which every unconditionally converging operator is weakly compact*, Bull. Acad. Polon. Sci., Sér. sci. math. astr. et phys.**10**(1962), 641-648. MR**26:6785****[P-S]**A. Pelczynski and Z. Semedani,*Spaces of continuous functions*III, Studia Math.**18**(1959), 213-222. MR**21:6528****[P-Sz]**A. Pelczynski and W. Szlenk,*An example of a non-shrinking basis*, Rev. Roumaine Math. Pures Appl.**10**(1963), 961-966. MR**34:3284****[Pf]**H. Pfitzner,*Weak compactness in the dual of a**-algebra is determined commutatively*, Math. Ann.**298**(1994), 349-371. MR**95a:46082****[R]**H. Rosenthal,*A characterization of Banach spaces containing*, J. Amer. Math. Soc.**7**(1994), 707-748. MR**94i:46032****[U]**A. Ülger,*Subspaces and subalgebras of**whose duals have the Schur property*, J. Operator Theory**37**(1997), 371-378. MR**98g:47035**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46B20,
46B03,
46L05,
46J10

Retrieve articles in all journals with MSC (1991): 46B20, 46B03, 46L05, 46J10

Additional Information

**Walden Freedman**

Affiliation:
Department of Mathematics, College of Arts and Sciences, Koç University, 80860 Istinye, Istanbul, Turkey

Email:
wfreedman@ku.edu.tr

**Ali Ülger**

Affiliation:
Department of Mathematics, College of Arts and Sciences, Koç University, 80860 Istinye, Istanbul, Turkey

Email:
aulger@ku.edu.tr

DOI:
https://doi.org/10.1090/S0002-9939-00-05703-8

Keywords:
Phillips lemma,
Dunford-Pettis property,
property $(u)$,
property (V),
Schur property

Received by editor(s):
September 7, 1998

Published electronically:
February 21, 2000

Communicated by:
Dale Alspach

Article copyright:
© Copyright 2000
by Walden Freedman and Ali Ülger