TRUDINGER TYPE INEQUALITIES IN \mathbb{R}^N
AND THEIR BEST EXPOSANTS

SHINJI ADACHI AND KAZUNAGA TANAKA

(Communicated by Christopher Sogge)

Abstract. We study Trudinger type inequalities in \mathbb{R}^N and their best exponents α_N. We show for $\alpha \in (0, \alpha_N)$, $\alpha_N = N \omega_{N-1}^{1/(N-1)}$ (ω_{N-1} is the surface area of the unit sphere in \mathbb{R}^N), there exists a constant $C_\alpha > 0$ such that

$$\int_{\mathbb{R}^N} \Phi_N \left(\alpha \left(\frac{\|u(x)\|}{\|\nabla u\|_{L^N(\mathbb{R}^N)}} \right)^p \right) \, dx \leq C_\alpha \frac{\|u\|_{L^N(\mathbb{R}^N)}}{\|\nabla u\|_{L^N(\mathbb{R}^N)}}$$

for all $u \in W^{1,N}(\mathbb{R}^N) \setminus \{0\}$. Here $\Phi_N(\xi)$ is defined by

$$\Phi_N(\xi) = \exp(\xi) - \sum_{j=0}^{N-2} \frac{1}{j!} \xi^j.$$

It is also shown that (\ast) with $\alpha \geq \alpha_N$ is false, which is different from the usual Trudinger’s inequalities in bounded domains.

0. Introduction

In this note, we study the limit case of Sobolev’s inequalities; suppose $N \geq 2$ and let $D \subset \mathbb{R}^N$ be an open set. We denote by $W_0^{1,N}(D)$ the usual Sobolev space, that is, the completion of $C_0^\infty(D)$ with the norm $\|u\|_{W_0^{1,p}(D)} = \|\nabla u\|_p + \|u\|_p$. Here

$$\|u\|_p = \left(\int_D |u|^p \, dx \right)^{1/p}.$$

It is well-known that

$$W_0^{1,p}(D) \subset L^{\frac{pN}{N-p}}(D) \quad \text{if } 1 \leq p < N,$$
$$W_0^{1,p}(D) \subset L^\infty(D) \quad \text{if } N < p.$$

The case $p = N$ is the limit case of these imbeddings and it is known that

$$W_0^{1,N}(D) \subset L^q(D) \quad \text{for } N \leq q < \infty,$$
$$W_0^{1,N}(D) \not\subset L^\infty(D).$$

Received by the editors May 5, 1998 and, in revised form, August 26, 1998. 1991 Mathematics Subject Classification. Primary 46E35, 26D10. The second author was partially supported by the Sumitomo Foundation (Grant No. 960354) and Waseda University Grant for Special Research Projects 97A-140, 98A-122.

©2000 American Mathematical Society
This case is studied by Trudinger [14] more precisely and he showed for bounded domains $D \subset \mathbb{R}^N$

\[(0.1) \quad \int_D \exp \left(\alpha \left(\frac{|u(x)|}{\|\nabla u\|_N} \right)^\frac{N}{N-1} \right) \, dx \leq C |D| \]

for $u \in W^{1,N}_0(D) \setminus \{0\}$, where the constants α, C are independent of u and D.

Trudinger’s result is extended into two directions; the first one is to find the best exponents in (0.1). Moser [8] proved that (0.1) holds for N but not for $N > N$, where

\[(0.2) \quad \alpha_N = N \omega_{N-1}^{1/(N-1)} \]

and ω_{N-1} is the surface area of the unit sphere in \mathbb{R}^N. See also Adams [1]. We also refer to [3], [5], [7], [13] for the attainability of

\[
\sup \left\{ \int_D \exp \left(\alpha_N \left(\frac{|u(x)|}{\|\nabla u\|_N} \right)^\frac{N}{N-1} \right) \, dx; \ u \in W^{1,N}_0(D) \setminus \{0\} \right\}.
\]

The second direction is to extend Trudinger’s result for unbounded domains and for Sobolev spaces of higher order and fractional order. We refer to D. R. Adams [1], R. A. Adams [2], Ogawa [9], Ogawa-Ozawa [10], Ozawa [11], Strichartz [12].

In this paper, we study a version of Trudinger inequalities in \mathbb{R}^N and their best exponents; we show

\[(0.3) \quad \int_{\mathbb{R}^N} \exp \left(\alpha \left(\frac{|u(x)|}{\|\nabla u\|_N} \right)^\frac{N}{N-1} \right) \, dx \leq C \|u\|_N^{\frac{N}{N-1}} \]

for $u \in W^{1,N}(\mathbb{R}^N) \setminus \{0\}$, where α, $C > 0$ are independent of u, and we also find the best exponents α for (0.3).

In [9], [11], [2], (0.3) and related inequalities are obtained without studying their best exponents; Ogawa [9] obtained (0.3) for $N = 2$ and Ozawa [11] extended it for functions in the Sobolev space $H^{N/p; p}(\mathbb{R}^N) = (1 - \Delta)^{-N/2p}L^p(\mathbb{R}^N)$ of fractional order. See also [10]. Adams [2] studied a different version of (0.3); however the dependence in u of the right-hand side is not given explicitly.

The main purpose of this paper is to study the best exponents α in (0.3) as well as to give a simplified proof of (0.3).

To simplify notation, we use

\[(0.4) \quad \Phi_N(\xi) = \exp(\xi) - \sum_{j=0}^{N-2} \frac{1}{j!} \xi^j. \]

With this notation, (0.3) becomes

\[(0.5) \quad \int_{\mathbb{R}^N} \Phi_N \left(\alpha \left(\frac{|u(x)|}{\|\nabla u\|_N} \right)^\frac{N}{N-1} \right) \, dx \leq C \|u\|_N^{\frac{N}{N-1}}. \]

One of the virtues of the inequality (0.5) is its scale-invariance; for $u \in W^{1,N}(\mathbb{R}^N)$ and $\lambda > 0$, we set

\[(0.6) \quad u_\lambda(x) = u(\lambda x). \]
We can easily see that \(k \| u \|_{N} = \| \nabla u \|_{N} \) and

\[
\int_{\mathbb{R}^{N}} \Phi_{N} \left(\alpha \left(\frac{|u(x)|}{\| \nabla u \|_{N}} \right)^{N \alpha} \right) dx = \lambda^{-N} \int_{\mathbb{R}^{N}} \Phi_{N} \left(\alpha \left(\frac{|u(x)|}{\| \nabla u \|_{N}} \right)^{N \alpha} \right) dx,
\]

(0.7)

\[
\| u \|_{N}^{N} = \lambda^{-N} \| u \|_{N}^{N}.
\]

Thus (0.5) is invariant under the scaling (0.6) and we believe the best exponents \(\alpha \) in (0.5) are of interest.

Our main result is the following.

Theorem 0.1. Suppose \(N \geq 2 \). Then for any \(\alpha \in (0, \alpha_N) \) (\(\alpha_N \) is given in (0.2)), there exists a constant \(C_\alpha > 0 \) such that

\[
\int_{\mathbb{R}^{N}} \Phi_{N} \left(\alpha \left(\frac{|u(x)|}{\| \nabla u \|_{N}} \right)^{N \alpha} \right) dx \leq C_\alpha \frac{\| u \|_{N}^{N}}{\| \nabla u \|_{N}^{N}} \quad \text{for } u \in W^{1,N}(\mathbb{R}^{N}) \setminus \{0\}.
\]

We remark that the restriction \(\alpha < \alpha_N \) is optimal. The limit exponent \(\alpha_N \) is excluded for (0.5). It is quite different from Moser’s result for (0.1).

Theorem 0.2. For \(\alpha \geq \alpha_N \), there exists a sequence \((u_k(x))_{k=1}^{\infty} \subset W^{1,N}(\mathbb{R}^{N}) \) such that \(\| \nabla u_k \|_{N} = 1 \) and

\[
\frac{1}{\| u_k \|_{N}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N} \left(\alpha \left(\frac{|u_k(x)|}{\| \nabla u_k \|_{N}} \right)^{N \alpha} \right) dx \geq \frac{1}{\| u_k \|_{N}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N} \left(\alpha_N \left(\frac{|u_k(x)|}{\| \nabla u_k \|_{N}} \right)^{N \alpha} \right) dx \to \infty
\]

as \(k \to \infty \).

Remark 0.3. Even if we consider (0.5) in a bounded domain \(D \), i.e.,

\[
\int_{D} \Phi_{N} \left(\alpha \left(\frac{|u(x)|}{\| \nabla u \|_{N}} \right)^{N \alpha} \right) dx \leq C_\alpha \frac{\| u \|_{N}^{N}}{\| \nabla u \|_{N}^{N}} \quad \text{for } u \in W^{1,N}(D) \setminus \{0\},
\]

the limit exponent \(\alpha_N \) is still excluded. It is because of the scale-invariance (0.7)–(0.8). See Remark 2.1 below.

As to the proof of the inequality (0.5), following the original idea of Trudinger, \[9\], \[10\], \[11\] made use of a combination of the power series expansion of the exponential function and sharp multiplicative inequalities:

\[
\| u \|_{q} \leq C(N, q) \| u \|_{N}^{N/q} \| \nabla u \|_{N}^{1-1-N/q}.
\]

(0.11)

For multiplicative inequalities of type (0.11) and their applications, we refer to Edmunds-Ilyin \[4\] and Kozono-Ogawa-Sohr \[6\]. We also remark that in Ozawa \[11\] multiplicative inequalities for functions \(H^{N/p;p}(<\mathbb{R}^{N}) \) are given and they are applied to obtain Brezis-Gallouet-Wainger type inequalities.

We give proofs of Theorems 0.1 and 0.2 in the following sections. We take a different approach from \[9\], \[10\], \[11\], we use Moser’s idea; we take symmetrization of functions and we reduce (0.5) to one-dimensional inequality.
1. Proof of Theorem 0.1

To prove Theorem 0.1, we use an idea of Moser [8]. By means of symmetrization, it suffices to show the desired inequality (0.5) for functions \(u(x) = u(|x|) \), which are non-negative, compactly supported, radially symmetric, and \(u(|x|) : [0, \infty) \to \mathbb{R} \) are decreasing.

Following Moser’s argument, we set

\[
W(t) = N^{-\frac{N-1}{2}} \frac{1}{\omega_{N-1}} u \left(e^{-\frac{t}{N}} \right), \quad |x|^N = e^{-t}.
\]

Then \(W(t) \) is defined on \((0, \infty)\) and satisfies

\[
\begin{align*}
W(t) &\geq 0 \quad \text{for } t \in \mathbb{R}, \\
\dot{W}(t) &\geq 0 \quad \text{for } t \in \mathbb{R}, \\
W(t_0) &= 0 \quad \text{for some } t_0 \in \mathbb{R}.
\end{align*}
\]

Moreover we have

\[
\begin{align*}
\int_{\mathbb{R}^N} |\nabla u|^N \, dx &= \int_{-\infty}^\infty |\dot{W}(t)|^N \, dt, \\
\int_{\mathbb{R}^N} \Phi_N \left(\alpha u^{\frac{N-1}{N-\beta}} \right) \, dx &= \frac{\omega_{N-1}}{N} \int_{-\infty}^\infty \Phi_N \left(\frac{\alpha}{\omega_{N-1}} w(t)^{\frac{N}{N-1}} \right) e^{-t} \, dt, \\
\int_{\mathbb{R}^N} |u(x)|^N \, dx &= \frac{1}{N^N} \int_{-\infty}^\infty |w(t)|^N e^{-t} \, dt.
\end{align*}
\]

Thus, to prove Theorem 0.1, it suffices to show that for any \(\beta \in (0, 1) \) there exists a constant \(C_{\beta} > 0 \) such that

\[
\int_{-\infty}^\infty \Phi_N \left(\beta w(t)^{\frac{N}{N-\beta}} \right) e^{-t} \, dt \leq C_{\beta} \int_{-\infty}^\infty |w(t)|^N e^{-t} \, dt
\]

for all functions \(w(t) \) satisfying (1.2)–(1.4) and

\[
\int_{-\infty}^\infty |\dot{w}(t)|^N \, dt = 1.
\]

Proof of Theorem 0.1. Let \(w(t) \) be a function satisfying (1.2)–(1.4) and (1.9). We set

\[
T_0 = \sup \{ t \in \mathbb{R}; w(t) \leq 1 \} \in (-\infty, \infty].
\]

We decompose the integral on the left-hand side of (1.8) according to the decomposition \((-\infty, \infty) = (-\infty, T_0] \cup [T_0, \infty).\)

For \(t \in (-\infty, T_0] \), we have \(w(t) \in [0, 1] \). We can find a constant \(m_N > 0 \) such that

\[
\Phi_N(\xi) \leq m_N \xi^{N-1} \quad \text{for } \xi \in [0, 1].
\]

Thus we have

\[
\int_{-\infty}^{T_0} \Phi_N \left(\beta w(t)^{\frac{N}{N-\beta}} \right) e^{-t} \, dt \leq m_N \int_{-\infty}^{T_0} w(t)^N e^{-t} \, dt.
\]
Next we consider the integral over \([T_0, \infty)\). Since \(w(T_0) = 1\), we have for \(t \geq T_0\)
\[
w(t) = w(T_0) + \int_{T_0}^{t} \dot{w}(\tau) d\tau
\leq w(T_0) + (t - T_0)^{\frac{N-1}{N}} \left(\int_{T_0}^{\infty} \dot{w}(\tau)^N d\tau \right)^{\frac{1}{N}}
\leq 1 + (t - T_0)^{\frac{N-1}{N}}.
\]
We remark that for any \(\varepsilon > 0\) there exists a constant \(C_\varepsilon > 0\) such that
\[1 + s^{\frac{N}{N-1}} \leq ((1 + \varepsilon)s + C_\varepsilon)^{\frac{N}{N-1}} \quad \text{for all} \ s \geq 0.
\]
Thus, we have
\[|w(t)|^{\frac{N}{N-1}} \leq (1 + \varepsilon)(t - T_0) + C_\varepsilon \quad \text{for} \ t \geq T_0.
\]
Since \(\beta \in (0, 1)\), we can choose \(\varepsilon > 0\) small so that \(\varepsilon(1 + \varepsilon) < 1\). Thus we have
\[
\int_{T_0}^{\infty} \Phi_N \left(\beta w(t)^{\frac{N}{N-1}} \right) e^{-t} dt \leq \int_{T_0}^{\infty} \exp \left(\beta w(t)^{\frac{N}{N-1}} - t \right) dt
\leq \int_{T_0}^{\infty} \exp \left((\beta(1 + \varepsilon) - 1)(t - T_0) + \beta C_\varepsilon - T_0 \right) dt
= \frac{1}{1 - \beta(1 + \varepsilon)} e^{\beta C_\varepsilon e^{-T_0}}.
\]
On the other hand,
\[
\int_{T_0}^{\infty} |w(t)|^N e^{-t} dt \geq \int_{T_0}^{\infty} e^{-t} dt = e^{-T_0}.
\]
Therefore it follows from (1.11) and (1.12) that
\[
\int_{T_0}^{\infty} \Phi_N \left(\beta w(t)^{\frac{N}{N-1}} \right) e^{-t} dt \leq \frac{e^{\beta C_\varepsilon}}{1 - \beta(1 + \varepsilon)} \int_{T_0}^{\infty} |w(t)|^N e^{-t} dt.
\]
Thus, setting \(C_\beta = \max\{m_N, \frac{e^{\beta C_\varepsilon}}{1 - \beta(1 + \varepsilon)}\}\), we obtain (1.8).

2. Proof of Theorem 0.2

It suffices to show Theorem 0.2 for \(\alpha = \alpha_N\). We use the idea of Moser again. Repeating the argument of the previous section, it suffices to find a sequence of functions \(w_k(t) : \mathbb{R} \to \mathbb{R}\) which satisfies (1.1)–(1.4), (1.9) and
\[
\int_{-\infty}^{\infty} |w_k(t)|^N e^{-t} dt \to 0 \quad \text{as} \ k \to \infty,
\]
\[
\int_{-\infty}^{\infty} \Phi_N \left(w_k(t)^{\frac{N}{N-1}} \right) e^{-t} dt \geq \frac{1}{2} \quad \text{for large} \ k.
\]
If we define a sequence of functions \((u_k(x))_{k=1}^{\infty} \subset W^{1,N}(\mathbb{R}^N)\) from \((w_k(t))_{k=1}^{\infty}\) through the relation (1.1), it follows from (1.5)–(1.7), (1.9), (2.1) and (2.2) that \(\|
\nabla u_k\|_N = 1\) and (0.9). Thus \((u_k)_{k=1}^{\infty}\) has a desired property in Theorem 0.2.
Here we give an example of \((w_k(t))_{k=1}^{\infty}\) explicitly. We set
\[
w_k(t) = \begin{cases}
0 & \text{for } t \leq 0, \\
k^{N-1} \frac{t}{k} & \text{for } 0 \leq t < k, \\
k^{N-1} \frac{1}{N} & \text{for } k \leq t.
\end{cases}
\]
Such functions appeared in [8] to show that the integral on the left-hand side of (0.1) can be made arbitrarily large for \(\alpha > \alpha_N\). It is easily seen that \(w_k(t)\) satisfies (1.2)–(1.4) and (1.9).

First we verify (2.1).
\[
\int_{-\infty}^{\infty} |w_k(t)|^N e^{-t} dt = \int_0^k \left(k^{\frac{N-1}{N}} \frac{t}{k} \right)^N e^{-t} dt + \int_k^{\infty} k^{N-1} e^{-t} dt \\
\leq \frac{1}{k} \int_0^{\infty} t^N e^{-t} dt + k^{N-1} e^{-k} \\
\rightarrow 0 \text{ as } k \rightarrow \infty.
\]

Next we deal with (2.2).
\[
\int_{-\infty}^{\infty} \Phi_N \left(w_k(t)^{\frac{N}{N-1}} \right) e^{-t} dt \\
= \int_0^k \Phi_N \left(\left(\frac{t}{k} \right)^{\frac{N}{N-1}} \right) e^{-t} dt + \int_k^{\infty} \Phi_N(k) e^{-t} dt \\
= \int_0^k \exp \left(\left(\frac{t}{k} \right)^{\frac{N}{N-1}} \right) - \sum_{j=0}^{N-2} \frac{1}{j!} \left(\left(\frac{t}{k} \right)^{\frac{N}{N-1}} \right)^j e^{-t} dt \\
+ \Phi_N(k) e^{-k} \\
= \int_0^k \exp \left(\left(\frac{t}{k} \right)^{\frac{N}{N-1}} - t \right) dt - \sum_{j=0}^{N-2} \frac{1}{j!} k^{-\frac{N}{N-1}} \int_0^k t^{\frac{N}{N-1}j} e^{-t} dt \\
+ \left(e^k - \sum_{j=0}^{N-2} \frac{1}{j!} k^j \right) e^{-k} \\
\geq \int_0^k e^{-t} dt - \sum_{j=0}^{N-2} \frac{1}{j!} k^{-\frac{N}{N-1}} \int_0^k t^{\frac{N}{N-1}j} e^{-t} dt \\
+ \left(e^k - \sum_{j=0}^{N-2} \frac{1}{j!} k^j \right) e^{-k} \\
\rightarrow 1 - 1 + 1 = 1 \text{ as } k \rightarrow \infty.
\]

Thus we obtain (2.1) and (2.2). This completes the proof of Theorem 0.2. \(\square\)

Remark 2.1. The function \(u_k(x)\) corresponding \(w_k(t)\) has a compact support, i.e., \(\text{supp } u_k(x) \subset \{ x \in \mathbb{R}^N ; |x| \leq 1 \}\). Thus (0.10) with \(\alpha = \alpha_N\) is false for \(D = \{ x \in \mathbb{R}^N ; |x| < 1 \}\). If we set for \(a > 0\)
\[
w_a,k(t) = w_k(t + N \log a),
\]
then corresponding $u_{a,k}(x)$ has a compact support, i.e., $\text{supp} u_{a,k}(x) \subset \{ x \in \mathbb{R}^N : |x| \leq a \}$ and satisfies $\| \nabla u_{a,k} \|_N = 1$ and (0.9). Since we can choose $a > 0$ arbitrarily small, (0.10) with $\alpha = \alpha_N$ is false for any domain D.

References

Department of Mathematics, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

E-mail address: kazunaga@mn.waseda.ac.jp