Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Growth properties of superharmonic functions along rays

Author: Stephen J. Gardiner
Journal: Proc. Amer. Math. Soc. 128 (2000), 1963-1970
MSC (2000): Primary 31B05
Published electronically: November 1, 1999
MathSciNet review: 1646303
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a precise topological description of the set of rays along which a superharmonic function on $\mathbb{R}^n$ may grow quickly. The corollary that arbitrary growth cannot occur along all rays answers a question posed by Armitage.

References [Enhancements On Off] (What's this?)

  • 1. D. H. Armitage, Radial limits of superharmonic functions in the plane, Colloq. Math. 67 (1994), 245-252. MR 96a:31001
  • 2. V. Avanissian, Fonctions plurisousharmoniques et fonctions doublement sousharmoniques, Ann. Sci. École Norm. Sup. (3) 78 (1961), 101-161. MR 24:A2052
  • 3. J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer, New York, 1984. MR 85k:31001
  • 4. M. R. Essén and S. J. Gardiner, Limits along parallel lines and the classical fine topology, J. London Math. Soc., to appear.
  • 5. B. Fuglede, Finely harmonic functions, Lecture Notes in Math. 289, Springer, Berlin, 1972. MR 56:8883
  • 6. S. J. Gardiner, Harmonic approximation, LMS Lecture Note Series 221, Cambridge Univ. Press, 1995. MR 96j:31001
  • 7. S. J. Gardiner, The Lusin-Privalov theorem for subharmonic functions, Proc. Amer. Math. Soc. 124 (1996), 3721-3727. MR 97m:31003
  • 8. W. Hansen, Abbildungen harmonischer Räume mit Anwendung auf die Laplace und Wärmeleitungsgleichung, Ann. Inst. Fourier Grenoble 21, 3 (1971), 203-216. MR 49:617
  • 9. L. L. Helms, Introduction to potential theory, Krieger, New York, 1975. MR 57:659
  • 10. N. S. Landkof, Foundations of modern potential theory, Springer, Berlin, 1972. MR 50:2520
  • 11. A. A. Shaginyan, Uniform and tangential harmonic approximation of continuous functions on arbitrary sets, Mat. Zametki 9 (1971), 131-142; English translation in Math. Notes 9 (1971), 78-84.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31B05

Retrieve articles in all journals with MSC (2000): 31B05

Additional Information

Stephen J. Gardiner
Affiliation: Department of Mathematics, University College Dublin, Dublin 4, Ireland

Received by editor(s): April 1, 1998
Received by editor(s) in revised form: August 13, 1998
Published electronically: November 1, 1999
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society