Higher order symmetric spaces and the roots of the identity in a Lie group

CECÍLIA FERREIRA AND ARMANDO MACHADO

(Communicated by Roe Goodman)

Abstract. Let $r_k(G)$ denote the set of all k-roots of the identity in a Lie group G. We show that $r_k(G)$ is always an embedded submanifold of G, having the conjugacy classes of its elements as open submanifolds. These conjugacy classes are examples of k-symmetric spaces and we show, more generally, that every k-symmetric space of a Lie group G is a covering manifold of an embedded submanifold Orb of G. We compute also the Hessian of the inclusions of $r_k(G)$ and Orb into G, relative to the natural connection on the domain and to the symmetric connection on G.

1. Introduction

There are several examples of homogeneous manifolds of a Lie group G that can be realized equivariantly as connected components of the set $r_k(G)$ of all k-roots of the identity e of G, with G acting by conjugation, in particular as conjugation classes of elements of G: If E is a Hermitian vector space, the Grassmann manifold $Gr_p(E)$, whose elements are the p-dimensional vector subspaces, can be realized as a connected component of $r_2(U(E))$, as observed by Uhlenbeck [6], and, in an analogous way, if E is a Euclidean space, $Gr_p(E)$ admits a connected component of $r_2(O(E))$ as an equivariant model; More generally, if E is a Hermitian space, the connected components of $r_k(U(E))$ are models of the flag manifolds $G_{p_1,\ldots,p_k}(E)$, whose elements are the systems (F_1,\ldots,F_k) of mutually orthogonal subspaces, with dimensions p_1,\ldots,p_k, whose direct sum is E [3]; If E is a Euclidean space, the connected components of $r_3(O(E))$ are models of the manifolds $F_p(E)$, whose elements are the p-dimensional partially complex structures, i.e. the couples (F,J), where J is a compatible complex structure on the $2p$-dimensional real subspace $F \subset E$ [4], with the exception of the extreme case $\dim(E) = 2p$, where $F_p(E)$ is the union of two connected components.

With the previous examples in mind, we prove that, for a general Lie group G, $r_k(G)$ is always a submanifold of G, in general with variable dimension, having the conjugation classes of its elements as open submanifolds (we will use always the word “submanifold” with the meaning “embedded submanifold”).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
The conjugation classes of elements of \(r_k(G) \) are examples of \(k \)-symmetric manifolds; they are of the form \(G/G' \), where \(G' \) is the fixed point subgroup of a smooth automorphism \(\tau: G \to G \), satisfying \(\tau^k = I_{\text{ad}} \). The structure and classification of \(k \)-symmetric manifolds have been extensively studied in \([3]\) and it has been known for a long time (cf. \([2]\)) that every \(2 \)-symmetric manifold of the form \(G/G' \) can be one-to-one immersed into the Lie group \(G \), by associating \(g\tau(g^{-1}) \) with the class of an element \(g \in G \), a fact that can be generalized trivially to \(k \)-symmetric spaces. We will prove, more precisely, that this one-to-one immersion is always an embedding, and hence that the \(k \)-symmetric space \(G/G' \) admits a model \(\text{Orb} \) that is a submanifold of \(G \). This fact was established in \([1]\), for the special case where \(G \) is compact, where the name “Cartan embedding” is used (in fact, Burstall uses the inverse \(\tau(g)g^{-1} \) instead of \(g\tau(g^{-1}) \) but this makes no essential difference). Of course, for general \(k \)-symmetric spaces, those of the form \(G/H \), with \(H \) an open subgroup of \(G' \), all we can guarantee is that they are covering manifolds of the manifold \(\text{Orb} \).

Every \(k \)-symmetric space is reductive in a canonical way and, as such, it has a canonical connection, and it is known \([2]\) that, for \(k = 2 \), its embedding into the Lie group \(G \), considered with its symmetric connection, is totally geodesic. This fact led us to compute, for general \(k \), the Hessian of the inclusions of \(r_k(G) \) and \(\text{Orb} \) into \(G \).

In the next section we will prove a basic lemma that guarantees that, under certain conditions, the image of a smooth map is a smooth manifold. This lemma will be used in section 3 in order to prove that \(\text{Orb} \) is a submanifold but it is possible that it may present some independent interest.

2. A BASIC LEMMA

Lemma 1. Let \(X, Y \) and \(Z \) be manifolds and \(f: X \to Y \) and \(\varphi, \psi: Y \to Z \) be smooth maps such that \(\varphi \circ f = \psi \circ f \). Let \(x_0 \in X \) be such that every vector \(v \in T_{f(x_0)}(Y) \) verifying the condition \(D\varphi_{f(x_0)}(v) = D\psi_{f(x_0)}(v) \) is in the image of \(Df_{x_0}: T_{x_0}(X) \to T_{f(x_0)}(Y) \). Then the set \(B = \{ y \in Y \mid \varphi(y) = \psi(y) \} \) is a submanifold of \(Y \) at \(f(x_0) \), with the image of \(Df_{x_0} \) as tangent space, and \(f(X) \) is a neighborhood of \(f(x_0) \) in \(B \); in particular \(f(X) \) is also a submanifold of \(Y \) at \(f(x_0) \), with the same tangent space.

Proof. The question being local, we may assume that \(X, Y \) and \(Z \) are open in finite dimensional spaces \(E, F \) and \(G \) and that \(x_0 = 0 \) and \(f(x_0) = 0 \). Let us fix norms in these vector spaces, let \(H \subset F \) be a direct sum complement of the vector subspace \(Df_{x_0}(E) \) and let \(g = \psi - \varphi: Y \to G \). The fact that the linear map \(Dg_0: F \to G \) is one-to-one in \(H \) allows us to consider \(\delta > 0 \) such that, for each \(w \in H \), \(\|Dg_0(w)\| \geq \delta \|w\| \) (if \(H \) is not trivial, let \(\delta \) be the minimum of \(\|Dg_0(w)\| \), for \(w \in H \) with \(\|w\| = 1 \)). Let \(\varepsilon > 0 \) be such that, for each \(y \in F \) with \(\|y\| < \varepsilon \), we have \(\|Dg_0 - Dg_0|| \leq \delta/2 \). By the mean value theorem, if \(\|y'\| < \varepsilon \) and \(\|y''\| < \varepsilon \), then \(\|g(y') - g(y'') - Dg_0(y' - y'')\| \leq \delta/2\|y' - y''\| \). Let \(U \subset X \) and \(W \subset H \) be open sets, with \(0 \in U \) and \(0 \in W \), such that, for each \(x \in U \) and \(w \in W \), \(\|f(x) + w\| < \varepsilon \) and let us remark that, for \(x \in U \) and \(w \in W \), \(f(x) + w \in B \) if and only if \(w = 0 \). In fact, one of the implications is trivial and, for the other, if \(f(x) + w \in B \), then

\[
\delta \|w\| \leq \|Dg_0(w)\| = \|g(f(x) + w) - g(f(x)) - Dg_0(w)\| \leq \frac{\delta}{2} \|w\|;
\]
hence \(w = 0 \). The derivative at \((0,0)\) of the map \(X \times H \to F, (x,w) \mapsto f(x) + w \), maps \((u,v)\) onto \(Df_0(u) + v \) and is hence onto, so that a standard result about submersions guarantees the existence of an open set \(V \), with \(0 \in V \subset Y \), and of smooth maps \(\sigma_1: V \to U \subset E \) and \(\sigma_2: V \to W \subset H \), satisfying \(\sigma_1(0) = 0 \), \(\sigma_2(0) = 0 \) and \(f(\sigma_1(y)) + \sigma_2(y) = y \), for each \(y \in V \). By derivation, we have

\[
(1) \quad Df_0(\sigma_{10}(v)) + D\sigma_{20}(v) = v;
\]

hence \(D\sigma_{20} \) is the projection from \(F \) onto \(H \) associated to the direct sum, in particular is onto. As we proved above, for \(y \in V \), we have \(y \in B \) if, and only if, \(\sigma_2(y) = 0 \); hence \(B \) is a submanifold of \(Y \) at 0 and \(\mathcal{T}_0(B) \) is the kernel of the linear map \(D\sigma_{20}: F \to H \), so that, by (1), \(Df_0: E \to \mathcal{T}_0(B) \) is onto. This implies that \(f(X) \) is indeed a neighborhood of 0 in \(B \).

Although we will not apply it, we cannot resist stating the following trivial consequence of the previous lemma:

Corollary 1. Let \(X \) be a manifold and \(f: X \to X \) be a smooth map such that \(f \circ f = f \). Then \(f(X) = \{ y \in X \mid f(y) = y \} \) is a submanifold of \(X \) and

\[
\mathcal{T}_y(f(X)) = Df_y(\mathcal{T}_y(X)) = \{ u \in \mathcal{T}_y(X) \mid Df_y(u) = u \}.
\]

3. Embedding a \(k \)-symmetric space

In this section we will fix an integer \(k \geq 2 \), a Lie group \(G \) and a smooth automorphism \(\tau: G \to G \), such that \(\tau^k = Id_G \), and we will consider the corresponding \(k \)-symmetric space \(G/G^\tau \), where \(G^\tau = \{ g \in G \mid \tau(g) = g \} \) is the fixed point subgroup. For each \(g \in G \), we will denote by \([h]\) the corresponding class in \(G/G^\tau \).

We will denote \(\mathcal{G} = T_e(G) \) the Lie algebra of \(G \) and \(\theta = D\tau_e: \mathcal{G} \to \mathcal{G} \) the corresponding Lie algebra automorphism, that satisfies \(\theta^k = Id_{\mathcal{G}} \). Of course, the Lie algebra of the subgroup \(G^\tau \) is \(T_e(G^\tau) = \mathcal{G}^\theta = \{ u \in \mathcal{G} \mid \theta(u) = u \} \). The equality

\[
(Id - \theta) \circ (Id + \theta + \cdots + \theta^{k-1}) = 0,
\]

with commuting factors having trivial intersection kernels, implies that \(\mathcal{G} = \mathcal{H}_c \oplus \mathcal{M}_c \), where

\[
\mathcal{H}_c = \mathcal{G}^\theta = \ker(Id - \theta) = \{ u + \theta(u) + \cdots + \theta^{k-1}(u) \}_{u \in \mathcal{G}},
\]

\[
\mathcal{M}_c = \ker(Id + \theta + \cdots + \theta^{k-1}) = \{ u - \theta(u) \}_{u \in \mathcal{G}}.
\]

If \(g \in G^\tau \), the fact that the conjugation automorphism \(c_g \) commutes with \(\tau \) implies that the Lie algebra automorphism \(Ad_g \) commutes with \(\theta \) and hence that the direct sum \(\mathcal{G} = \mathcal{H}_c \oplus \mathcal{M}_c \) is \(Ad_g \)-invariant. We have hence a well-defined structure of reductive homogeneous space on \(G/G^\tau \), the one that will be considered implicitly. We remark that this is the same reductive structure in \(G/G^\tau \) that has been defined in [3], using the eigenspaces of the complexification of \(\theta \); however the direct approach will be useful later.

Proposition 1. Let us consider the smooth action of \(G \) in \(G \) defined by \(g \cdot h = gh\tau(g^{-1}) \) and let \(\text{Orb} = \{ g\tau(g^{-1}) \}_{g \in \mathcal{G}} \) be the orbit of \(e \) for this action. Let \(B \subset G \) be the set

\[
B = \{ h \in G \mid h\tau(h) \cdots \tau^{k-1}(h) = e \}.
\]
Then Orb is a submanifold of G, open in B, and there is an equivariant diffeomorphism $f : G/G^* \to Orb$ defined by $f([g]) = g\tau(g^{-1})$. Moreover, $T_e(Orb) = \mathcal{M}_e = \mathcal{M}_c$.

Proof. It is straightforward to verify that we have a well defined one-to-one smooth equivariant map $f : G/G^* \to G$, $[g] \mapsto g\tau(g^{-1})$, whose image is Orb, so that all we have to prove is that Orb is a submanifold of G, open in B. The fact that B, like Orb, is invariant by the action of G reduces us to proving that Orb is a neighborhood of e in B and that B is a submanifold of G at the point e. To simplify notations, let us denote by $\tilde{f} : G \to G$ the smooth map $g \mapsto g\tau(g^{-1})$, whose image is Orb. Let $\varphi : G \to G$ be the smooth map defined by $\varphi(h) = h\tau(h) \cdots \tau^{k-1}(h)$. We have $\varphi(\tilde{f}(g)) = e$, for each $g \in G$; in particular Orb $\subseteq B$. By differentiating at e, we obtain $D\tilde{f}_e(u) = u - \theta(u)$ and $D\varphi_e(v) = v + \theta(v) + \cdots + \theta^{k-1}(v)$, so that by what was discussed above, both the image of $D\tilde{f}_e$ and the kernel of $D\varphi_e$ are equal to \mathcal{M}_c. Applying Lemma 1, with a constant map as ψ, ends the proof.

The fact that Orb is a reductive homogeneous manifold of the Lie group G gives it a natural G-invariant connection. One method of characterizing this connection is to compute the Hessian of the inclusion of Orb into G, when we consider in G its natural symmetric connection. That is what we do now, limiting our computation to what happens at $e \in Orb$, because the general formula can be obtained through the left and right invariance of the connection of G. Following the formalism of [2], we compute first the Maurer-Cartan form $\beta_e : T_e(Orb) \to \mathcal{M}_e \subseteq \mathcal{G}$. We recall that β_e is the inverse of the restriction to \mathcal{M}_e of the derivative at e, $\rho_e : \mathcal{G} \to T_e(Orb)$, of the map $G \to Orb$, $g \mapsto g \cdot e = g\tau(g^{-1})$, a linear map that is hence defined by $\rho_e(u) = u - \theta(u)$.

Lemma 2. The Maurer-Cartan form $\beta_e : T_e(Orb) = \mathcal{M}_e \to \mathcal{M}_e$ is defined by

$$\beta_e(v) = -\frac{1}{k} \sum_{j=1}^{k-1} \theta^j(v).$$

Proof. All we have to prove is that the linear map β_e, defined above, maps \mathcal{M}_e into \mathcal{M}_e and verifies $\rho_e \circ \beta_e = Id_{\mathcal{M}_e}$ and this is a straightforward calculation if we recall that $\theta^{k} = Id\mathcal{G}$ and the characterization of \mathcal{M}_e as a kernel.

Proposition 2. The Hessian $h_e : \mathcal{M}_e \times \mathcal{M}_e \to \mathcal{G}$, of the inclusion Orb $\to G$ at e, is given by

$$h_e(u,v) = [\beta_e(u) - \frac{1}{2} u, v - \theta(v)].$$

Proof. Let us denote by ∇ and ∇^G the covariant derivatives associated to the connections we are considering in Orb and in G. Let $u, v \in \mathcal{M}_e$ and let Y be the vector field on Orb associated to v and to the action of G on Orb, that is defined by $Y_g = D\tilde{R}_{g e}(v) - D\tilde{L}_{g e}(\theta(v))$, where R_g and L_g denote the right and left translations by g. Let us denote also by Y the vector field on G defined by the same formula. Then

$$\nabla^G Y_e(u) = -\frac{1}{2} [u, v + \theta(v)]$$

and

$$\nabla Y_e(u) = -\rho_e([\beta_e(u), v]) = -[u, \theta(v)] - [\beta_e(u), v - \theta(v)],$$

and the result is now a consequence of the formula $h_e(u,v) = \nabla^G Y_e(u) - \nabla Y_e(u)$.

For $k = 2$, we have $\beta_k(u) = \frac{1}{2} u$; hence $h_e(u, v) = 0$, and we retrieve the conclusion that Orb is a totally geodesic submanifold.

Remark 1. There is another equivariant embedding of the k-symmetric space G/G^τ that, for $k = 2$, coincides with the previous one: The product group G^k acts transitively on the manifold G^{k-1} by

$$(g_1, \ldots, g_k) \cdot (h_1, \ldots, h_{k-1}) = (g_1 h_1 g_2^{-1}, g_2 h_2 g_3^{-1}, \ldots, g_{k-1} h_{k-1} g_k^{-1})$$

and G^{k-1} is then a k-symmetric manifold, with the permutation automorphism $\tau: G^k \to G^k$, $\tau(g_1, \ldots, g_k) = (g_2, \ldots, g_k, g_1)$ associated to the base point (e, \ldots, e) in G^{k-1}. The isotropy subgroup is the diagonal $\{(g_1, \ldots, g_k) \in G^k \mid g_1 = \cdots = g_k\}$, the corresponding Lie algebra is $H(e, \ldots, e) = \{(u_1, \ldots, u_k) \in G^k \mid u_1 = \cdots = u_k\}$ and the corresponding direct complement is $M(e, \ldots, e) = \{(u_1, \ldots, u_k) \mid u_1 + \cdots + u_k = 0\}$. We have hence an associated connection on G^{k-1}. We can consider the smooth morphism $\psi: G \to G^k$, $\psi(g) = (g, \tau(g), \ldots, \tau^{k-1}(g))$ and we have then a ψ-equivariant and ψ-reductive map $\Psi: G/G^\tau \to G^{k-1}$,

$$\Psi([g]) = (g \tau(g^{-1}), \tau(g) \tau^2(g^{-1}), \ldots, \tau^{k-2}(g) \tau^{k-1}(g^{-1})).$$

This map is hence totally geodesic and, by looking to the first coordinate, we conclude that it is an embedding of G/G^τ into a submanifold of G^{k-1}.

4. **The manifold $r_k(G)$**

In this section we will fix an integer $k \geq 2$ and a Lie group G and we will denote by $r_k(G)$ the set of k-roots of the identity in G,

$$r_k(G) = \{g \in G \mid g^k = e\}.$$

The group G acts on $r_k(G)$ by conjugation: $h \cdot g = c_h(g) = h g h^{-1}$. For each $g \in r_k(G)$, we will denote by $\text{Orb}_g = \{h g h^{-1}\}_{h \in G}$ the orbit of g for this action. We will denote by R_g and L_g the right and left translations by g.

Proposition 3. The set $r_k(G)$ is a closed submanifold of G and the orbits Orb_g, with $g \in r_k(G)$, are open in $r_k(G)$. Moreover, for each $g \in r_k(G)$,

$$T_g(r_k(G)) = DR_{g_e}(M_g) = DL_{g_e}(M_g) = \{DR_{g_e}(u) - DL_{g_e}(u)\}_{u \in G},$$

where $M_g \subset G$ is defined by

$$M_g = \ker(\text{Id} + Ad_g + \cdots + Ad_g^{k-1}) = \{u - Ad_g(u)\}_{u \in G}.$$

Proof. Let $g \in r_k(G)$. Then $c_g: G \to G$ is a smooth automorphism, such that $c_g^k = \text{Id}_G$ and the corresponding Lie algebra automorphism is $Ad_g: G \to G$. By Proposition 1, we conclude that $\text{Orb}_{(g)} = \{h c_g(h^{-1})\}_{h \in G}$ is a submanifold of G, open in

$$B_{(g)} = \{h \in G \mid h c_g(h) \cdots c_g^{k-1}(h) = e\}$$

and having M_g as tangent space at e. Considering the diffeomorphism $R_g: G \to G$, we conclude that $R_g(\text{Orb}_{(g)})$ is a submanifold of G open in $R_g(B_{(g)}) = r_k(G)$ and that $T_g(r_k(G)) = T_g(\text{Orb}_{(g)}) = DR_{g_e}(M_g)$. The other characterizations of $T_g(r_k(G))$ follow from the equality $DL_{g_e} = DR_{g_e} \circ Ad_g$ and from the Ad_g-invariance of M_g.

\[\square\]
Each orbit $Orb_g = \{gh^{-1}\}_{h \in G}$ is a homogeneous manifold of G and the restriction of the right translation to the homogeneous manifold $Orb_{(g)} = \{hc_g(h^{-1})\}_{h \in G}$, associated to the automorphism $c_g : G \rightarrow G$, is an equivariant diffeomorphism $R_g : Orb_{(g)} \rightarrow Orb_g$. By transport through this equivariant diffeomorphism, Orb_g becomes a reductive homogeneous space, such that, for each $g' = gh^{-1} \in Orb_g$, the horizontal space $M_{g'} \subset G$ is equal to the horizontal space of $Orb_{(g)}$ at $hc_g(h^{-1})$; hence

$$M_{g'} = Ad_h(M_c) = \{Ad_h(u) - Ad_h(Ad_g(u))\}_{u \in G} = \{v - Ad_{g'}(v)\}_{v \in G},$$

which is compatible with the notation used in the previous proposition and proves, in particular, that the reductive structure in Orb_g does not depend of the choice of g in the orbit.

The reductive homogeneous structure of the submanifolds Orb_g entitles them to, and hence $r_k(G)$, with an associated connection. The fact that $R_g : Orb_{(g)} \rightarrow Orb_g$ and $R_g : G \rightarrow G$ are totally geodesic maps allows us to deduce the following proposition from Proposition 2:

Proposition 4. For each $g \in r_k(G)$, the Hessian $h_g : T_g(r_k(G)) \times T_g(r_k(G)) \rightarrow T_g(G)$, of the inclusion $r_k(G) \rightarrow G$ at g, is defined by

$$h_g(\text{DR}_{g_c}(u), \text{DR}_{g_c}(v)) = \text{DR}_{g_c}([\beta_g(u) - \frac{1}{2}u, v - Ad_g(v)]),$$

for $u, v \in M_g$, where $\beta_g(u) = -\frac{1}{k} \sum_{j=1}^{k-1} j Ad_g^j(u)$.

Again, for $k = 2$, we have $\beta_g(u) = \frac{1}{2}u$, hence $h_g = 0$, and we retrieve the conclusion that $r_2(G)$ is a totally geodesic submanifold of G.

References

