A CRITERION FOR SPLITTING C^*-ALGEBRAS IN TENSOR PRODUCTS

LÁSZLÓ ZSIDÓ

(Communicated by David R. Larson)

Abstract. The goal of the paper is to prove the following theorem: if A,D are unital C^*-algebras, A simple and nuclear, then any C^*-subalgebra of the C^*-tensor product of A and D, which contains the tensor product of the unit of D, splits in the C^*-tensor product of A with some C^*-subalgebra of D.

Using essentially a result of J.B. Conway on numerical range and certain sets considered by J. Dixmier in type III factors, L. Ge and R.V. Kadison proved in [G-K]: for $R;Q;M$ W^*-algebras, R factor, satisfying
\[R \hat{\otimes} 1_Q \subset M \subset R \hat{\otimes} Q, \]
we have $M = R \hat{\otimes} P$ with P some W^*-subalgebra of Q.

Making use of the generalization of Conway’s result for global W^*-algebras, due independently to H. Halpern ([Hlp]) and Ş. Strâtilă and L. Zsidó ([S-Z1]), as well as of an extension of Tomita’s Commutation Theorem to tensor products over commutative von Neumann subalgebras, it was subsequently proved in [S-Z2]: for $R;Q;M$ W^*-algebras with
\[R \hat{\otimes} 1_Q \subset M \subset R \hat{\otimes} Q, \]
M is generated by $R \hat{\otimes} 1_Q$ and $M \cap (Z(R) \hat{\otimes} Q)$, where $Z(R)$ stands for the centre of R.

Using a result from [H-Z], the C^*-algebraic counterpart of the above cited results from [Hlp] and [S-Z1], as well as a slice map theorem for nuclear C^*-algebras due to S. Wassermann ([W], Prop. 10), we shall prove here:

Theorem. Let A,D,C be unital C^*-algebras, A simple and nuclear, such that
\[A \otimes 1_D \subset C \subset A \otimes_{\min} D. \]
Then
\[C = A \otimes_{\min} B \]
for some C^*-subalgebra $B \subset D$.

The next result is essentially contained in [H-Z], Corollary of Theorem 4:

Received by the editors August 22, 1998.
1991 Mathematics Subject Classification. Primary 46L05.
The author was supported by M.U.R.S.T., C.N.R. and E.U.
Approximation Lemma. Let A be a simple unital C^*-algebra without tracial state. Denoting by I_A the closure of the convex hull

$$F_A = \text{conv} \{ A \ni a \mapsto uau^* \in A; u \in A \text{ unitary} \}$$

with respect to the topology of the pointwise norm convergence in the Banach algebra of all bounded linear operators on A, and by $S(A)$ the state space of A, we have

$$S(A)1_A = \{ \Phi \in I_A; \Phi(A) \subset \mathbb{C}1_A \}.$$

Proof. Clearly, $\{ \Phi \in I_A; \Phi(A) \subset \mathbb{C}1_A \} = K \cdot 1_A$ with $K \subset S(A)$ convex. K is also weak* closed. Indeed, if $K \ni \psi_i \to \varphi \in S(A)$ in the weak* topology, then $I_A \ni \psi_i \cdot 1_A \to \varphi \cdot 1_A$ in the topology of pointwise norm convergence; hence $\varphi \cdot 1_A \in I_A$, i.e. $\varphi \in K$.

Let us denote for any $a \in A$

$$C_A(a) = \overline{F_A(a) \cap 1_A}.$$

By [H-Z], Corollary of Theorem 4,

$$C_A(a) \neq \emptyset$$

for all $a \in A$

and, plainly,

$$C_A(\Phi(a)) \subset C_A(a), \ \Phi \in F_A, a \in A.$$

Using the idea of the proof of Lemma 4 in [D], Ch. III, §5, it is easy to see that, for every

$$a \in A, \lambda \cdot 1_A \in C_A(a), \ \lambda_1, \ldots, \lambda_n \in A, \ \varepsilon > 0$$

there exists $\Phi \in F_A$ with

$$\| \Phi(a) - \lambda \cdot 1_A \| < \varepsilon,$$

$$\| \Phi(a_j) - \lambda_j \cdot 1_A \| < \varepsilon$$

for some $\lambda_j \in \mathbb{C}, 1 \leq j \leq n$.

Fix some $a \in A$ and $\lambda 1_A \in C_A(a)$. Since the closure of

$$F_{a_1, \ldots, a_n; \varepsilon} = \left\{ \Phi^{**}; \begin{array}{l} \Phi \in F_A, \| \Phi(a) - \lambda 1_A \| < \varepsilon, \\ d(\Phi(a_j), \mathbb{C}1_A) < \varepsilon \text{ for } 1 \leq j \leq n \end{array} \right\} \neq \emptyset$$

with respect to the topology of pointwise $\sigma(A^{**}, A^*)$-convergence is compact,

$$\bigcap_{a_1, \ldots, a_n \in A} F_{a_1, \ldots, a_n; \varepsilon}$$

contains some Ψ. Clearly,

$$\Psi(a) = \lambda 1_A.$$

Fix now also some $b \in A$. For every $\varphi_1, \ldots, \varphi_n \in A^*$ and $\varepsilon > 0$ there is some

$$\Theta \in F_{b; \varepsilon}$$

such that

$$|\varphi_j(\Psi(b) - \Theta(b))| < \varepsilon \| \varphi_j \|, 1 \leq j \leq n,$$

and then some

$$\mu \in \mathbb{C}.$$
with
\[\| \Theta(b) - \mu \cdot 1_A \| < \varepsilon. \]
Then
\[|\mu| < \| b \| + \varepsilon \text{ and } |\varphi_j(\Psi(b) - \mu \cdot 1_A)| < 2\varepsilon \| \varphi_j \|, \ 1 \leq j \leq n. \]
It follows that the downward directed compact sets
\[\left\{ \mu \in \mathbb{C}; |\mu| \leq \| b \| + \varepsilon, \right. \]
\[\left. |\varphi_j(\Psi(b) - \mu \cdot 1_A)| \leq 2\varepsilon \| \varphi_j \| \text{ for } 1 \leq j \leq n \right\}, \]
\[\varphi_i, \ldots, \varphi_n \in A^*, \ \varepsilon > 0, \]
are not empty; hence their intersection contains some \(\mu(b) \in \mathbb{C} \). Then
\[\Psi(b) = \mu(b) \cdot 1_A \in C1_A. \]
By the above,
\[\Psi(A) \subset C1_A. \]
Moreover, since \(\Psi|A \) takes values in \(C1_A \subset A \), it belongs to the pointwise \(\sigma(A, A^*) \)-closure of the convex set
\[\{ \Phi^{**}|A; \Phi \in \mathcal{F}_A \} = \mathcal{F}_A, \]
which is the pointwise norm closure \(\mathcal{I}_A \) of \(\mathcal{F}_A \).
We conclude: for any \(a \in A \) and any \(\lambda \cdot 1_A \in C_A(a) \) there exists \(\Phi \in \mathcal{I}_A \) with \(\Phi(A) \subset C1_A \) and \(\Phi(a) = \lambda \cdot 1_A \). In other words,
\[\lambda = \psi(a) \text{ for some } \psi \in K. \]
By the Hahn-Banach theorem \(K = S(A) \) follows if we show that for every \(a^* = a \in A \) with
\[(*) \]
\[\psi(a) \leq \lambda_0 \text{ for all } \psi \in K \]
we have
\[\varphi(a) \leq \lambda_0 \text{ for all } \varphi \in S(A). \]
But, according to \([\text{I}E\text{Z}], \) Corollary of Theorem 4, we have for every \(\varphi \in S(A) \)
\[\varphi(a) \cdot 1_A \in C_A(a), \]
so, by the above,
\[\varphi(a) = \psi(a) \text{ for some } \psi \in K \]
and \((*) \) yields
\[\varphi(a) \leq \lambda_0. \]
Now we prove the main ingredient for the proof of the announced theorem:

Invariance Lemma. Let A, D, C be unital C^*-algebras, A simple, such that
\[A \otimes 1_D \subset C \subset A \otimes_{\min} D. \]
Then, for any state φ on A,
\[(\varphi \cdot 1_A \otimes id_D)(C) \subset C; \]
hence
\[(\varphi \cdot 1_A \otimes id_D)(C) = C \cap (1_A \otimes D). \]

Proof. First we reduce the proof to the case in which A has no tracial state.

Let A_0 be any simple unital C^*-algebra without tracial state (e.g. the Calkin algebra or a type III factor of countable type), and φ_0 any state on A_0. Then $A_0 \otimes_{\min} A$ is a simple unital C^*-algebra without tracial state and
\[(A_0 \otimes_{\min} A) \otimes 1_D \subset A_0 \otimes_{\min} C \subset (A_0 \otimes_{\min} A) \otimes_{\min} D. \]
If we assume that in this case
\[(\varphi_0 \cdot 1_{A_0} \otimes \varphi \cdot 1_A \otimes id_D)(A_0 \otimes_{\min} C) \subset A_0 \otimes_{\min} C, \]
then
\[1_{A_0} \otimes (\varphi \cdot 1_A \otimes id_D)(C) = (\varphi_0 \cdot 1_{A_0} \otimes \varphi \cdot 1_A \otimes id_D)(1_{A_0} \otimes C) \subset A_0 \otimes_{\min} C, \]
\[(\varphi \cdot 1_A \otimes id_D)(C) \subset C. \]

Now let us assume that A has no tracial state. According to the Approximation Lemma there exists a net $(\Phi_i)_i$ in \mathcal{F}_A such that
\[\|\Phi_i(a) - \varphi(a) \cdot 1_A\| \to 0 \quad \text{for all } a \in A; \]
hence
\[\|(\Phi_i \otimes id_D)(a \otimes d) - (\varphi \cdot 1_A \otimes id_D)(a \otimes d)\| \to 0 \quad \text{for all } a \in A \text{ and } d \in D. \]
Since every $\Phi_i \otimes id_D$ is contractive, it follows that
\[\|(\Phi_i \otimes id_D)(x) - (\varphi \cdot 1_A \otimes id_D)(x)\| \to 0 \quad \text{for all } x \in A \otimes_{\min} D. \]
But every $\Phi_i \otimes id_D$ is convex combination of operators of the form $Ad(u \otimes 1_D)$ with $u \otimes 1_D \in A \otimes 1_D \subset C$, so it leaves C invariant. Consequently also their pointwise norm limit $\varphi_1 A \otimes id_D$ leaves C invariant.

Proof of the theorem. $C \cap (1_A \otimes D)$ is of the form $1_A \otimes B$ for some C^*-subalgebra $B \subset D$ and we have to prove that the C^*-subalgebras $A \otimes_{\min} B \subset C$ of $A \otimes_{\min} D$ coincide.

By the Invariance Lemma
\[C \cap (1_A \otimes D) = \{(\varphi \cdot 1_A \otimes id_D)(x); \varphi \in S(A), x \in C\}, \]
so
\[B = \{E_\varphi(x); \varphi \in S(A), x \in C\}, \]
where $E_\varphi : A \otimes_{\min} D \to D$ is the slice map defined by
\[1_A \otimes E_\varphi(x) = (\varphi \cdot 1_A \otimes id_D)(x), \quad x \in A \otimes_{\min} D. \]
In other words,

\[E_\varphi(x) \in B \text{ for all } x \in C \text{ and } \varphi \in S(A). \]

Since \(A \) is nuclear, we can apply S. Wassermann’s slice map theorem ([W], Prop. 10) and conclude that \(C \subseteq A \otimes_{\min} B \).

We notice that in the above proof the nuclearity of \(A \) was used only by applying Wassermann’s slice map theorem to \(A \). It is an open question whether this slice map theorem holds assuming \(A \) exact, that is, if

\[A \text{ exact } C^*\text{-algebra, } B \subseteq D \text{ } C^*\text{-algebras,} \]

imply \(x \in A \otimes_{\min} D, \ E_\varphi(x) \in B \) for all \(\varphi \in S(A) \). In the case of positive answer it would be enough to assume in our theorem \(A \) simple and exact.

Since the closure of the union of every upward directed family of nuclear \(C^*\)-subalgebras is still a nuclear \(C^*\)-subalgebra (see e.g. [M], Th. 6.3.10), the Zorn lemma implies that any nuclear \(C^*\)-subalgebra is contained in a maximal nuclear \(C^*\)-subalgebra.

Corollary. Let \(D \) be a unital \(C^*\)-algebra, \(1_D \in B \subseteq D \) a maximal nuclear \(C^*\)-subalgebra, and \(A \) a nuclear, simple, unital \(C^*\)-algebra. Then \(A \otimes_{\min} B \) is a maximal nuclear \(C^*\)-subalgebra of \(A \otimes_{\min} D \).

Proof. The \(C^*\)-algebra \(A \otimes_{\min} B (= A \otimes_{\max} B) \) is clearly nuclear.

Now let \(A \otimes_{\min} B \subseteq C \subseteq A \otimes_{\min} D \) be an arbitrary nuclear \(C^*\)-subalgebra. By the above theorem

\[C = A \otimes_{\min} B_0 \]

for some \(C^*\)-subalgebra \(B \subseteq B_0 \subseteq D \). The nuclearity of \(C \) implies the nuclearity of \(B_0 \), and then the maximal nuclearity of \(B \) in \(D \) yields \(B_0 = B \). Thus

\[C = A \otimes_{\min} B. \]

We notice also that in the case of positive answer to the above slice map question for exact \(C^*\)-algebras, when our theorem would follow for \(A \) only simple and exact, a counterpart of the above corollary would hold for maximal exact \(C^*\)-subalgebras.

Note added in proof. After this work was completed, we learned that our theorem was independently obtained also by Joachim Zacharias in his preprint: “A note on a result of Ge and Kadison and its \(C^*\)-algebra version”, 1998. He uses a different way to approximate states on simple unital \(C^*\)-algebras by elementary mappings.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROME “TOR VERGATA”, VIA DELLA RICERCA SCIENTIFICA, 00133 ROME, ITALY

E-mail address: zsido@axp.mat.uniroma2.it