Refinable subspaces of a refinable space
Authors:
Douglas P. Hardin and Thomas A. Hogan
Journal:
Proc. Amer. Math. Soc. 128 (2000), 19411950
MSC (1991):
Primary 39A10, 39B62, 42B99, 41A15
Published electronically:
October 29, 1999
MathSciNet review:
1662241
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Local refinable finitely generated shiftinvariant spaces play a significant role in many areas of approximation theory and geometric design. In this paper we present a new approach to the construction of such spaces. We begin with a refinable function which is supported on . We are interested in spaces generated by a function built from the shifts of .
 [BD]
C.
de Boor and R.
DeVore, Partitions of unity and
approximation, Proc. Amer. Math. Soc.
93 (1985), no. 4,
705–709. MR
776207 (86f:41003), http://dx.doi.org/10.1090/S00029939198507762072
 [DM]
W. Dahmen, C. A. Micchelli, Biorthogonal wavelet expansions, Constr. Approx. 13 (1997), 293328. CMP 97:13
 [DL]
Ingrid
Daubechies and Jeffrey
C. Lagarias, Twoscale difference equations. II. Local regularity,
infinite products of matrices and fractals, SIAM J. Math. Anal.
23 (1992), no. 4, 1031–1079. MR 1166574
(93g:39001), http://dx.doi.org/10.1137/0523059
 [GL]
T. N. T. Goodman, S. L. Lee, Refinable vectors of spline functions, Mathematical Methods for Curves and Surfaces II (M. Dæhlen, T. Lyche, L. L. Schumaker, eds.), Vanderbilt University Press, Nashville & London, 1997, pp. 213220. CMP 99:01
 [H]
T. A. Hogan, A note on matrix refinement equations, SIAM J. Math. Anal. 29 (1998), 849854. CMP 98:11
 [HJ]
T. A. Hogan, R.Q. Jia, Dependency relations among the shifts of a multivariate refinable distribution, Constr. Approx., to appear.
 [J1]
Rong
Qing Jia, The Toeplitz theorem and its
applications to approximation theory and linear PDEs, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2585–2594. MR 1277117
(95i:41014), http://dx.doi.org/10.1090/S00029947199512771178
 [J2]
RongQing
Jia, Shiftinvariant spaces on the real
line, Proc. Amer. Math. Soc.
125 (1997), no. 3,
785–793. MR 1350950
(97e:41039), http://dx.doi.org/10.1090/S0002993997035867
 [J4]
RongQing
Jia, Shiftinvariant spaces and linear operator equations,
Israel J. Math. 103 (1998), 259–288. MR 1613580
(99d:41016), http://dx.doi.org/10.1007/BF02762276
 [J5]
RongQing
Jia, Stability of the shifts of a finite number of functions,
J. Approx. Theory 95 (1998), no. 2, 194–202. MR 1652860
(99h:42040), http://dx.doi.org/10.1006/jath.1998.3215
 [J6]
Rong
Qing Jia, Multiresolution of 𝐿_{𝑝} spaces, J.
Math. Anal. Appl. 184 (1994), no. 3, 620–639.
MR
1281533 (95h:42034), http://dx.doi.org/10.1006/jmaa.1994.1226
 [JRZ]
RongQing
Jia, S.
D. Riemenschneider, and DingXuan
Zhou, Vector subdivision schemes and
multiple wavelets, Math. Comp.
67 (1998), no. 224, 1533–1563. MR 1484900
(99d:42062), http://dx.doi.org/10.1090/S0025571898009855
 [JS]
Q. Jiang, Z. Shen, On existence and weak stability of matrix refinable functions, Constr. Approx., to appear.
 [LLS]
Wayne
Lawton, S.
L. Lee, and Zuowei
Shen, Characterization of compactly supported refinable
splines, Adv. Comput. Math. 3 (1995), no. 12,
137–145. MR 1314906
(95m:41020), http://dx.doi.org/10.1007/BF03028364
 [M]
Charles
A. Micchelli, Mathematical aspects of geometric modeling,
CBMSNSF Regional Conference Series in Applied Mathematics, vol. 65,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1995. MR
1308048 (95i:65036)
 [MP1]
Charles
A. Micchelli and Hartmut
Prautzsch, Uniform refinement of curves, Linear Algebra Appl.
114/115 (1989), 841–870. MR 986909
(90k:65088), http://dx.doi.org/10.1016/00243795(89)904953
 [MP2]
C.
A. Micchelli and H.
Prautzsch, Refinement and subdivision for spaces of integer
translates of a compactly supported function, Numerical analysis 1987
(Dundee, 1987) Pitman Res. Notes Math. Ser., vol. 170, Longman Sci.
Tech., Harlow, 1988, pp. 192–222. MR 951929
(90h:65016)
 [MS]
C. A. Micchelli, T. Sauer, Regularity of multiwavelets, Advances in Comp. Math. 7 (1997), 455545. CMP 98:01
 [BD]
 C. de Boor, R. DeVore, Partitions of unity and approximation, Proc. Amer. Math. Soc. 93 (1985), 705709. MR 86f:41003
 [DM]
 W. Dahmen, C. A. Micchelli, Biorthogonal wavelet expansions, Constr. Approx. 13 (1997), 293328. CMP 97:13
 [DL]
 I. Daubechies, J. C. Lagarias, Twoscale difference equations II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23 (1992), 10311079. MR 93g:39001
 [GL]
 T. N. T. Goodman, S. L. Lee, Refinable vectors of spline functions, Mathematical Methods for Curves and Surfaces II (M. Dæhlen, T. Lyche, L. L. Schumaker, eds.), Vanderbilt University Press, Nashville & London, 1997, pp. 213220. CMP 99:01
 [H]
 T. A. Hogan, A note on matrix refinement equations, SIAM J. Math. Anal. 29 (1998), 849854. CMP 98:11
 [HJ]
 T. A. Hogan, R.Q. Jia, Dependency relations among the shifts of a multivariate refinable distribution, Constr. Approx., to appear.
 [J1]
 R.Q. Jia, The Toeplitz theorem and its applications to approximation theory and linear PDE's, Trans. Amer. Math. Soc. 347 (1995), 25852594. MR 95i:41014
 [J2]
 R.Q. Jia, Shiftinvariant spaces on the real line, Proc. Amer. Math. Soc. 125 (1997), 785793. MR 97e:41039
 [J4]
 R.Q. Jia, Shiftinvariant spaces and linear operator equations, Israel J. Math. 103 (1998), 259288. MR 99d:41016
 [J5]
 R.Q. Jia, Stability of the shifts of a finite number of functions, J. Approx. Theory 95 (1998), 194202. MR 99h:42040
 [J6]
 R.Q. Jia, Multiresolution of spaces, J. Math. Anal. Appl. 184 (1994), 620639. MR 95h:42034
 [JRZ]
 R.Q. Jia, S. D. Riemenschneider, and D. X. Zhou, Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998), 15331563. MR 99d:42062
 [JS]
 Q. Jiang, Z. Shen, On existence and weak stability of matrix refinable functions, Constr. Approx., to appear.
 [LLS]
 W. Lawton, S. L. Lee, Z. Shen, Characterization of compactly supported refinable splines, Advances in Comp. Math. 3 (1995), 137145. MR 95m:41020
 [M]
 C. A. Micchelli, Mathematical Aspects of Geometric Modeling, CBMSNSF Regional Conference Series in Applied Mathematics v.65, SIAM, Philadelphia PA, 1995. MR 95i:65036
 [MP1]
 C. A. Micchelli, H. Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989), 841870. MR 90k:65088
 [MP2]
 C. A. Micchelli, H. Prautzsch, Refinement and subdivision for spaces of integer translates of a compactly supported function, Numerical Analysis 1987 (D. F. Griffiths and G. A. Watson, eds.), Longman Scientific and Technical, Essex, 1987, pp. 192222. MR 90h:65016
 [MS]
 C. A. Micchelli, T. Sauer, Regularity of multiwavelets, Advances in Comp. Math. 7 (1997), 455545. CMP 98:01
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
39A10,
39B62,
42B99,
41A15
Retrieve articles in all journals
with MSC (1991):
39A10,
39B62,
42B99,
41A15
Additional Information
Douglas P. Hardin
Affiliation:
Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email:
hardin@math.vanderbilt.edu
Thomas A. Hogan
Affiliation:
Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email:
hogan@math.vanderbilt.edu
DOI:
http://dx.doi.org/10.1090/S0002993999052971
PII:
S 00029939(99)052971
Keywords:
Refinability,
matrix subdivision,
refinable function vector,
multiwavelet,
shiftinvariant,
FSI
Received by editor(s):
February 4, 1998
Received by editor(s) in revised form:
August 5, 1998
Published electronically:
October 29, 1999
Additional Notes:
This research was partially supported by a grant from the NSF and a grant from the Vanderbilt University Research Council.
Communicated by:
David R. Larson
Article copyright:
© Copyright 2000 American Mathematical Society
