Joint mean oscillation and local ideals

in the Toeplitz algebra

Author:
Jingbo Xia

Journal:
Proc. Amer. Math. Soc. **128** (2000), 2033-2042

MSC (1991):
Primary 46H10, 47B35, 47C15

Published electronically:
November 23, 1999

MathSciNet review:
1664395

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the joint local mean oscillation LMO and discuss to what extent this function-theoretical quantity serves as a -algebraic invariant in the full Toeplitz algebra

**[1]**Sheldon Axler, Sun-Yung A. Chang, and Donald Sarason,*Products of Toeplitz operators*, Integral Equations Operator Theory**1**(1978), no. 3, 285–309. MR**511973**, 10.1007/BF01682841**[2]**Ronald G. Douglas,*Banach algebra techniques in operator theory*, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 49. MR**0361893****[3]**John B. Garnett,*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971****[4]**Paul S. Muhly and Jingbo Xia,*Calderón-Zygmund operators, local mean oscillation and certain automorphisms of the Toeplitz algebra*, Amer. J. Math.**117**(1995), no. 5, 1157–1201. MR**1350595**, 10.2307/2374974**[5]**Donald Sarason,*Functions of vanishing mean oscillation*, Trans. Amer. Math. Soc.**207**(1975), 391–405. MR**0377518**, 10.1090/S0002-9947-1975-0377518-3**[6]**D. Sarason,*Products of Toeplitz operators*, Lecture Notes in Mathematics Vol. 1573, Springer-Verlag, Berlin, 1994.**[7]**A. L. Vol′berg,*Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason*, J. Operator Theory**7**(1982), no. 2, 209–218. MR**658609****[8]**D. Xia and D. Zheng,*Products of Hankel operators*, Integral Eq. Operator Theory**29**(1997), 339-363. CMP**98:03****[9]**J. Xia,*Rigged non-tangential maximal functions associated with Toeplitz operators and Hankel operators*, Pacific J. Math.**182**(1998), 385-396. CMP**98:09****[10]**Dechao Zheng,*The distribution function inequality and products of Toeplitz operators and Hankel operators*, J. Funct. Anal.**138**(1996), no. 2, 477–501. MR**1395967**, 10.1006/jfan.1996.0073**[11]**Dechao Zheng,*Toeplitz operators and Hankel operators on the Hardy space of the unit sphere*, J. Funct. Anal.**149**(1997), no. 1, 1–24. MR**1471097**, 10.1006/jfan.1997.3110

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46H10,
47B35,
47C15

Retrieve articles in all journals with MSC (1991): 46H10, 47B35, 47C15

Additional Information

**Jingbo Xia**

Affiliation:
Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14214

Email:
jxia@acsu.buffalo.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-05369-1

Received by editor(s):
August 24, 1998

Published electronically:
November 23, 1999

Additional Notes:
This research was supported in part by National Science Foundation grant DMS-9703515.

Communicated by:
David R. Larson

Article copyright:
© Copyright 2000
American Mathematical Society