Isomorphisms between substrongly reducible maximal triangular algebras
Authors:
Fangyan Lu and Shijie Lu
Journal:
Proc. Amer. Math. Soc. 128 (2000), 21212128
MSC (2000):
Primary 47L75, 47L35
Published electronically:
November 29, 1999
MathSciNet review:
1690996
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we introduce the concept of substrongly maximal triangular algebras which form a large class of maximal triangular algebras, and prove that every algebraic isomorphism of substrongly maximal triangular algebras is spatially implemented, which generalizes the result by Ringrose in two respects.
 1.
Kenneth
R. Davidson, Nest algebras, Pitman Research Notes in
Mathematics Series, vol. 191, Longman Scientific & Technical,
Harlow; copublished in the United States with John Wiley & Sons, Inc.,
New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
(90f:47062)
 2.
J.
A. Erdos, Some results on triangular operator algebras, Amer.
J. Math. 89 (1967), 85–93. MR 0209905
(35 #800)
 3.
J.
A. Erdos, Operators of finite rank in nest algebras, J. London
Math. Soc. 43 (1968), 391–397. MR 0230156
(37 #5721)
 4.
Richard
V. Kadison, Triangular algebras—another chapter,
Selfadjoint and nonselfadjoint operator algebras and operator theory (Fort
Worth, TX, 1990) Contemp. Math., vol. 120, Amer. Math. Soc.,
Providence, RI, 1991, pp. 63–76. MR 1126275
(92h:47059), http://dx.doi.org/10.1090/conm/120/1126275
 5.
Richard
V. Kadison and I.
M. Singer, Triangular operator algebras. Fundamentals and
hyperreducible theory., Amer. J. Math. 82 (1960),
227–259. MR 0121675
(22 #12409)
 6.
J. L. Orr, On the closure of triangular algebras, Bull. Amer. Math. Soc. 23 (2) (1990), 461467.
 7.
Yiu
Tung Poon, Maximal triangular subalgebras need
not be closed, Proc. Amer. Math. Soc.
111 (1991), no. 2,
475–479. MR 1034888
(91f:46082), http://dx.doi.org/10.1090/S00029939199110348885
 8.
J.
R. Ringrose, Algebraic isomorphisms between ordered bases,
Amer. J. Math. 83 (1961), 463–478. MR 0140921
(25 #4335)
 9.
J.
R. Ringrose, On some algebras of operators, Proc. London Math.
Soc. (3) 15 (1965), 61–83. MR 0171174
(30 #1405)
 10.
J.
R. Ringrose, On some algebras of operators. II, Proc. London
Math. Soc. (3) 16 (1966), 385–402. MR 0196516
(33 #4703)
 1.
 K. R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series 191, Longman Scientific and Technical, Burnt Mill Harlow, Essex, UK, 1988. MR 90f:47062
 2.
 J. A. Erdos, Some results on triangular operators algebras, Amer. J. Math. 89 (1967), 8593. MR 35:800
 3.
 J. A. Erdos, Operators of finite rank in nest algebras, J. London Math. Soc. 43 (1968), 391397. MR 37:5721
 4.
 R. V. Kadison, Triangular algebrasanother chapter, in Selfadjoint and Nonselfadjoint Operator Algebras and Operator Theory (R. S. Dotan, ed.), Contemp. Math., vol. 120, Amer. Math. Soc., 1991, pp. 6376. MR 92h:47059
 5.
 R. V. Kadison and I. M. Singer, Triangular operator algebras, Amer. J. Math. 82 (1960), 227259. MR 22:12409
 6.
 J. L. Orr, On the closure of triangular algebras, Bull. Amer. Math. Soc. 23 (2) (1990), 461467.
 7.
 Y. T. Poon, Maximal triangular subalgebras need not be closed, Proc. Amer. Math. Soc. 111 (2) (1991), 475479. MR 91f:46082
 8.
 J. R. Ringrose, Algebraic isomorphisms between ordered bases, Amer. J. Math. 83 (1961), 463478. MR 25:4335
 9.
 J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. 15 (3) (1965), 6183. MR 30:1405
 10.
 J. R. Ringrose, On some algebras of operators. II, Proc. London Math. Soc. 3 (3) (1966), 385402. MR 33:4703
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
47L75,
47L35
Retrieve articles in all journals
with MSC (2000):
47L75,
47L35
Additional Information
Fangyan Lu
Affiliation:
School of Mathematical Science, Suzhou University, Suzhou 215006, People’s Republic of China
Email:
fylu@suda.edu.cn
Shijie Lu
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou 310027, People’s Republic of China
DOI:
http://dx.doi.org/10.1090/S0002993999054593
PII:
S 00029939(99)054593
Keywords:
Substrongly reducible maximal triangular algebras,
hull nest,
isomorphism
Received by editor(s):
January 6, 1998
Received by editor(s) in revised form:
September 4, 1998
Published electronically:
November 29, 1999
Communicated by:
David R. Larson
Article copyright:
© Copyright 2000
American Mathematical Society
