Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The length of $C^{*}$-algebras
of $\mathbf{\mathrm{b}}$-pseudodifferential operators


Author: Robert Lauter
Journal: Proc. Amer. Math. Soc. 128 (2000), 1955-1961
MSC (2000): Primary 46L85, 58G40; Secondary 35S35, 46L80
DOI: https://doi.org/10.1090/S0002-9939-99-05532-X
Published electronically: November 23, 1999
MathSciNet review: 1694871
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the length of the $C^{*}$-algebra generated by the algebra of b-pseudodifferential operators of order $0$ on compact manifolds with corners.


References [Enhancements On Off] (What's this?)

  • 1. J. Dixmier. Les $C^{*}$-algèbres et leur représentations. Gauthier - Villars Éditeur, Paris, second french edition, 1969. MR 39:7442
  • 2. A. Dynin. Inversion problems for singular integral operators: $C^{*}$-approach. Proc. Nat. Acad. Sci. U.S.A, 75:4668-4670, 1978. MR 80c:46066
  • 3. B. Gramsch. Some homogeneous spaces in the operator theory and $\Psi$-algebras. In Tagungsbericht Oberwolfach 42/81 - Funktionalanalysis: $C^{*}$-Algebren, 1981.
  • 4. R. Lauter. On the existence and structure of $\Psi^{*}$-algebras of totally characteristic operators on compact manifolds with boundary. Preprint Nr. 12/97, Fachbereich Mathematik, Johannes Gutenberg-Universität Mainz, October 1997. To appear in J. Funct. Anal.
  • 5. R. Lauter. O predstavleniyah $\Psi^{*}$- i $C^*$- algebr psevdodifferentsial'nyh operatorov na mnogoobraziyah s vershinami. In N. N. Ural'tseva, editor, Nelineinye uravneniya s chastnymi proizvodnymi i teoriya funktsii, volume 18 of Problemy matematicheskogo analiza, pages 85-117. Sankt-Peterburgskii universitet, November 1998. in Russian.
  • 6. P. A. Loya. On the b-pseudodifferential calculus on manifolds with corners. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.
  • 7. R. B. Melrose. Analysis on manifolds with corners. in preparation.
  • 8. R. B. Melrose. Transformation of boundary value problems. Acta Math., 147:149-236, 1981. MR 83f:58073
  • 9. R. B. Melrose. The Atiyah-Patodi-Singer index theorem, volume 4 of Research Notes in Mathematics. A K Peters, Wellesley, Massachusetts, 1993. MR 96g:58180
  • 10. R. B. Melrose and V. Nistor. K-theory of $C^{*}$-algebras of b-pseudodifferential operators. Geometric and Functional Analysis, 8:88-122, 1998. CMP 98:07
  • 11. R. B. Melrose and P. Piazza. Analytic K-theory on manifolds with corners. Adv. Math., 92:1-26, 1992. MR 93h:58149
  • 12. B. A. Plamenevskij and V. N. Senichkin. Representations of $C^{*}$-algebras generated by pseudodifferential operators in weighted spaces. Amer. Math. Soc. Transl., 157:163-188, 1993. MR 89e:47074; MR 94g:00020
  • 13. B. A. Plamenevskij and V. N. Senichkin. Solvable algebras of operators. St. Petersburg Math. J., 6:895-968, 1995. Originally published in Russian - Algebra i Anal., 1994. MR 95k:47038
  • 14. B. A. Plamenevskij and V. N. Senichkin. On composition series in algebras of pseudodifferential operators and in algebras of Wiener-Hopf operators, pages 373-404. Mathematical topics - Advances in Partial Differential Equations. Akademie-Verlag, Berlin, 1996. MR 97h:47050
  • 15. B. A. Plamenevskij and V. N. Senichkin. Pseudodifferential operators on manifolds with singularities. Preprint, in Russian, 1997.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L85, 58G40, 35S35, 46L80

Retrieve articles in all journals with MSC (2000): 46L85, 58G40, 35S35, 46L80


Additional Information

Robert Lauter
Affiliation: Fachbereich 17 - Mathematik, Universität Mainz, D-55099 Mainz, Germany
Email: lauter@mathematik.uni-mainz.de

DOI: https://doi.org/10.1090/S0002-9939-99-05532-X
Keywords: Length of solvable $C^{*}$-algebras, b-pseudodifferential operators, manifolds with corners
Received by editor(s): June 23, 1998
Received by editor(s) in revised form: August 12, 1998
Published electronically: November 23, 1999
Additional Notes: This work was supported by a scholarship of the German Academic Exchange Service (DAAD) within the Hochschulsonderprogramm III von Bund und Ländern.
Communicated by: David R. Larson
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society