Injective resolutions of Noetherian rings

and cogenerators

Author:
Jun-ichi Miyachi

Journal:
Proc. Amer. Math. Soc. **128** (2000), 2233-2242

MSC (1991):
Primary 16D50, 16D90, 16E10, 18G35; Secondary 16D20, 18E30

Published electronically:
February 23, 2000

MathSciNet review:
1662273

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give new construction of injective resolutions of complexes and bimodules. Applying this construction to an injective resolution of a Noetherian ring, we construct a -embedding cogenerator for the category of modules of projective dimension . Moreover, for a Noetherian projective -algebra , we show that satisfies the Auslander condition if and only if the flat dimension of every -module is equal to or larger than the one of the injective hull .

**[B1]**Hyman Bass,*Injective dimension in Noetherian rings*, Trans. Amer. Math. Soc.**102**(1962), 18–29. MR**0138644**, 10.1090/S0002-9947-1962-0138644-8**[B2]**Hyman Bass,*On the ubiquity of Gorenstein rings*, Math. Z.**82**(1963), 8–28. MR**0153708****[BN]**Marcel Bökstedt and Amnon Neeman,*Homotopy limits in triangulated categories*, Compositio Math.**86**(1993), no. 2, 209–234. MR**1214458****[CE]**Henri Cartan and Samuel Eilenberg,*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480****[FGR]**Robert M. Fossum, Phillip A. Griffith, and Idun Reiten,*Trivial extensions of abelian categories*, Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin-New York, 1975. Homological algebra of trivial extensions of abelian categories with applications to ring theory. MR**0389981****[H1]**Mitsuo Hoshino,*Noetherian rings of self-injective dimension two*, Comm. Algebra**21**(1993), no. 4, 1071–1094. MR**1209921**, 10.1080/00927879308824611**[H2]**Mitsuo Hoshino,*On self-injective dimensions of Artinian rings*, Tsukuba J. Math.**18**(1994), no. 1, 1–8. MR**1287825****[HS]**B. Huisgen-Zimmermann and S. O. Smalø, A homological bridge between finite and infinite dimensional representations of algebras, preprint.**[L]**Daniel Lazard,*Autour de la platitude*, Bull. Soc. Math. France**97**(1969), 81–128 (French). MR**0254100****[Ma]**Eben Matlis,*Injective modules over Noetherian rings*, Pacific J. Math.**8**(1958), 511–528. MR**0099360****[Mi]**Jun-ichi Miyachi,*Duality for derived categories and cotilting bimodules*, J. Algebra**185**(1996), no. 2, 583–603. MR**1417387**, 10.1006/jabr.1996.0341**[X]**Jin Zhong Xu,*Minimal injective and flat resolutions of modules over Gorenstein rings*, J. Algebra**175**(1995), no. 2, 451–477. MR**1339651**, 10.1006/jabr.1995.1196

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
16D50,
16D90,
16E10,
18G35,
16D20,
18E30

Retrieve articles in all journals with MSC (1991): 16D50, 16D90, 16E10, 18G35, 16D20, 18E30

Additional Information

**Jun-ichi Miyachi**

Affiliation:
Department of Mathematics, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan

Email:
miyachi@u-gakugei.ac.jp

DOI:
http://dx.doi.org/10.1090/S0002-9939-00-05305-3

Received by editor(s):
June 25, 1998

Received by editor(s) in revised form:
September 15, 1998

Published electronically:
February 23, 2000

Communicated by:
Ken Goodearl

Article copyright:
© Copyright 2000
American Mathematical Society