Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Euler products associated with noncuspidal metaplectic forms


Authors: Shamita Dutta Gupta and Xiaotie She
Journal: Proc. Amer. Math. Soc. 128 (2000), 2203-2212
MSC (1991): Primary 11F55; Secondary 11F30
DOI: https://doi.org/10.1090/S0002-9939-00-05593-3
Published electronically: February 25, 2000
MathSciNet review: 1707145
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we obtain an Euler product with functional equation associated to a noncuspidal metaplectic form $f$ on the double cover of $GL(2)$. Zagier's idea of Rankin-Selberg method is used to define the convolution of $f$ and the $\theta $-function.


References [Enhancements On Off] (What's this?)

  • [1] Bump D. and Hoffstein J. Some Euler products associated with cubic metaplectic forms on GL(3), Duke. Math. J. 53 1047-1072 (1986). MR 88d:11044
  • [2] Bump D. and Hoffstein J. On Shimura's correspondence, Duke. Math. J. 55 661-691 (1987). MR 89c:11072
  • [3] Dutta Gupta S. The Rankin-Selberg method on congruence subgroups, Illinois J. Math. (to appear).
  • [4] Dutta Gupta S. and She X. The GL(2) Rankin-Selberg method for functions not of rapid decay, J. Num. Th. 71 159-165 (1998). MR 99h:11049
  • [5] Flicker Y. Automorphic forms on covering groups of GL(2), Inv. Math. 57 119-182 (1980). MR 81m:10057
  • [6] Flicker Y. and Kazhdan D. Metaplectic Correspondence, Publ. Math., IHES 64 53-110 (1986). MR 88d:11049
  • [7] Friedberg S. Theta series correspondence and modular forms for number fields, In: Modular Forms. Chichester: Horwood, 75-86 (1984). MR 87c:11043
  • [8] Friedberg S. and Wong S. On the Shimura correspondence for GSp(4), Math. Ann. 290 183-207 (1991). MR 92f:11063
  • [9] Gelbart S. and Piatetski-Shapiro I. On Shimura's correspondence for modular forms of half-integral weight, Automorphic forms, Representation Theory and Arithmetic, Bombay, (1979). MR 83b:10032
  • [10] Goetze T. Euler products associated to metaplectic automorphic forms on the 3-fold cover of GSp(4), Trans. Amer. Math. Soc. 350 No. 3 975-1011 (1998). MR 98e:11061
  • [11] Hoffstein J. Theta Functions on the n-fold metaplectic cover of GL(2), Invent. Math. 107 61-86 (1992). MR 92k:11049
  • [12] Kubota T. Ein arithmetischer Satz uber eine Matrizengruppe, J. Reine Angew. Math. 222 55-57 (1966). MR 32:5633
  • [13] Lieman D. The GL(3) Rankin-Selberg convolution for functions not of rapid decay, Duke Math. J. 69 219-242 (1993). MR 94a:11070
  • [14] Niwa S. Modular forms of half integral weight and the integral of certain theta-functions, Nagoya Math. J. 56 147-161 (1974). MR 51:361
  • [15] Patterson S. A cubic analogue of the theta series.I, J. Reine Angew. Math. 296 125-161 (1977). MR 58:27795a
  • [16] Shimura G. On modular forms of half integral weight, Annals of Math. 97 440-481 (1973).
  • [17] Shintani T. On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 83-126 (1975). MR 52:10603
  • [18] Zagier D. The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ of Tokyo, Sect. IA. 28 415-437 (1981). MR 83k:10056

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11F55, 11F30

Retrieve articles in all journals with MSC (1991): 11F55, 11F30


Additional Information

Shamita Dutta Gupta
Affiliation: Department of Mathematics, Florida International University, Miami, Florida 33199
Email: duttagus@fiu.edu

Xiaotie She
Affiliation: Financial Data Planning Corporation, 2140 S. Dixie Highway, Miami, Florida 33133
Email: xiaoties@fdpcorp.com

DOI: https://doi.org/10.1090/S0002-9939-00-05593-3
Keywords: Eisenstein series, automorphic forms, Fourier expansions, Euler products, functional equations
Received by editor(s): September 8, 1998
Published electronically: February 25, 2000
Communicated by: Dennis A. Hejhal
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society