Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Bivariate version of the Hahn-Sonine theorem
HTML articles powered by AMS MathViewer

by Jeongkeun Lee PDF
Proc. Amer. Math. Soc. 128 (2000), 2381-2391 Request permission

Abstract:

We consider orthogonal polynomials in two variables whose derivatives with respect to $x$ are orthogonal. We show that they satisfy a system of partial differential equations of the form \begin{equation*} \alpha (x,y)\partial _{x}^{2}\overrightarrow {U}\!_{n}+\beta (x,y)\partial _{x} \overrightarrow {U}\!_{n}=\Lambda _{n}\overrightarrow {U}\!_{n}, \end{equation*} where $\deg \alpha \leq 2$, $\deg \beta \leq 1$, $\overrightarrow {U} _{n}=(U_{n0},U_{n-1,1},\cdots ,U_{0n})$ is a vector of polynomials in $x$ and $y$ for $n\geq 0$, and $\Lambda _{n}$ is an eigenvalue matrix of order $(n+1)\times (n+1)$ for $n\geq 0$. Also we obtain several characterizations for these polynomials. Finally, we point out that our results are able to cover more examples than Bertran’s.
References
  • W. A. Al-Salam and T. S. Chihara, Another characterization of the classical orthogonal polynomials, SIAM J. Math. Anal. 3 (1972), 65–70. MR 316772, DOI 10.1137/0503007
  • M. Bertran, Note on orthogonal polynomials in $v$-variables, SIAM J. Math. Anal. 6 (1975), 250–257. MR 364705, DOI 10.1137/0506025
  • S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 65-72.
  • William C. Connett and Alan L. Schwartz, Continuous $2$-variable polynomial hypergroups, Applications of hypergroups and related measure algebras (Seattle, WA, 1993) Contemp. Math., vol. 183, Amer. Math. Soc., Providence, RI, 1995, pp. 89–109. MR 1334773, DOI 10.1090/conm/183/02056
  • W. Hahn, Über die Jacobischen Polynom und zwei verwandte Polynomklassen, Math. Z. 39 (1935), 634-638.
  • Y. J. Kim, K. H. Kwon, and J. K. Lee, Orthogonal polynomials in two variables and second-order partial differential equations, J. Comput. Appl. Math. 82 (1997), no. 1-2, 239–260. 7th ICCAM 96 Congress (Leuven). MR 1473544, DOI 10.1016/S0377-0427(97)00082-4
  • Y. J. Kim, K. H. Kwon, and J. K. Lee, Partial differential equations having orthogonal polynomial solutions, Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), 1998, pp. 239–253. MR 1662698, DOI 10.1016/S0377-0427(98)00160-5
  • M. A. Kowalski, The recursion formulas for orthogonal polynomials in $n$ variables, SIAM J. Math. Anal. 13 (1982), no. 2, 309–315. MR 647128, DOI 10.1137/0513022
  • Marek A. Kowalski, Algebraic characterization of orthogonality in the space of polynomials, Orthogonal polynomials and applications (Bar-le-Duc, 1984) Lecture Notes in Math., vol. 1171, Springer, Berlin, 1985, pp. 101–110. MR 838975, DOI 10.1007/BFb0076535
  • Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
  • H. L. Krall and I. M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. (4) 76 (1967), 325–376. MR 228920, DOI 10.1007/BF02412238
  • K. H. Kwon, J. K. Lee and L. L. Littlejohn, Orthogonal polynomial eigenfunctions of second order partial differential equations, preprint.
  • K. H. Kwon, J. K. Lee, and B. H. Yoo, Characterizations of classical orthogonal polynomials, Results Math. 24 (1993), no. 1-2, 119–128. MR 1229063, DOI 10.1007/BF03322321
  • Kil H. Kwon and Lance L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), no. 4, 973–1008. MR 1485963
  • L. L. Littlejohn, Orthogonal polynomial solutions to ordinary and partial differential equations, Orthogonal polynomials and their applications (Segovia, 1986) Lecture Notes in Math., vol. 1329, Springer, Berlin, 1988, pp. 98–124. MR 973423, DOI 10.1007/BFb0083355
  • A. L. Schwartz, Partial differential equations and bivariate orthogonal polynomials, preprint.
  • N. Ja Sonine, Über die angenäherte Berechnung der bestimmten Integrale und über die dabei vorkommenden ganzen Functionen, Warsaw Univ. Izv 18 (1887), 1-76.
  • Yuan Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24 (1993), no. 3, 783–794. MR 1215438, DOI 10.1137/0524048
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 33C50, 35P99
  • Retrieve articles in all journals with MSC (1991): 33C50, 35P99
Additional Information
  • Jeongkeun Lee
  • Affiliation: Department of Mathematics, Sunmoon University, Asan, ChoongNam 336-840, Korea
  • Email: jklee@omega.sunmoon.ac.kr
  • Received by editor(s): September 19, 1998
  • Published electronically: February 21, 2000
  • Communicated by: Hal L. Smith
  • © Copyright 2000 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 128 (2000), 2381-2391
  • MSC (1991): Primary 33C50, 35P99
  • DOI: https://doi.org/10.1090/S0002-9939-00-05648-3
  • MathSciNet review: 1709757