Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Compact composition operators
on the Smirnov class

Authors: Jun Soo Choa, Hong Oh Kim and Joel H. Shapiro
Journal: Proc. Amer. Math. Soc. 128 (2000), 2297-2308
MSC (1991): Primary 47B38; Secondary 30D55
Published electronically: December 8, 1999
MathSciNet review: 1653449
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a composition operator on the Smirnov class $N^+$ is compact if and only if it is compact on some (equivalently: every) Hardy space $H^p$ for $0<p<\infty$. Along the way we show that for composition operators on $N^+$ both the formally weaker notion of boundedness, and a formally stronger notion we call metric compactness, are equivalent to compactness.

References [Enhancements On Off] (What's this?)

  • 1. J. S. Choa and H. O. Kim, Compact composition operators on the Nevanlinna class, Proc. Amer. Math. Soc. 125 (1997), 145-151. MR 97c:47031
  • 2. J. A. Cima and A. Matheson, Essential norms of composition operators and Aleksandrov measures, Pacific J. Math. 179 (1997), 59-64. MR 98e:47047
  • 3. C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press 1995. MR 97i:47056
  • 4. P. L. Duren, Theory of $H^p$ Spaces, Academic Press 1970. MR 42:3552
  • 5. T. W. Gamelin, Uniform Algebras, Prentice-Hall 1969. MR 53:14137
  • 6. J. B. Garnett, Bounded Analytic Functions, Academic Press 1981. MR 83g:30037
  • 7. F. Jafari et al., editors, Studies on Composition Operators, Contemp. Math. Vol. 213, American Math. Soc. 1998. MR 98h:47005
  • 8. J. L. Kelley, I. Namioka, et al., Linear Topological Spaces, Van Nostrand 1963. MR 29:3851
  • 9. M. I. Masri, Compact Composition Operators on the Nevanlinna and Smirnov Classes, Thesis, Univ. of North Carolina at Chapel Hill 1985.
  • 10. Y. Nakamura and N. Yanagihara, Composition operators on $N^+$, TRU Math. 14 (1978), 9-16. MR 80f:30024
  • 11. W. Rudin, Real and Complex Analysis, Third ed., McGraw-Hill 1987. MR 88k:00002
  • 12. D. Sarason. Composition operators as integral operators, in Analysis and Partial Differential Equations, C. Sadowski, ed., Marcel Dekker 1990. MR 92a:47040
  • 13. H. J. Schwartz, Composition operators on $H^p$, Thesis, Univ. of Toledo 1969.
  • 14. Jonathan E. Shapiro, Aleksandrov measures used in essential norm inequalities for composition operators, J. Operator Th., to appear. CMP 98:17
  • 15. J. H. Shapiro, The essential norm of a composition operator, Annals of Math. 125 (1987), 375-404. MR 88c:47058
  • 16. J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag 1993. MR 94k:47049
  • 17. J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna Class, American J. Math. 97 (1976) 915-936. MR 52:11053
  • 18. J. H. Shapiro and C. Sundberg, Compact composition operators on $L^1$, Proc. Amer. Math. Soc. 108 (1990), 443-449. MR 90d:47035
  • 19. J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on $H^p$, Indiana Univ. Math. J. 23 (1973), 471-496. MR 48:4816
  • 20. V. I. Smirnov, Sur les valeurs limits des fonctions, regulière à l'intérieur d'un cercle, J. Soc. Phys. Math. Léningrade 2, No. 2 (1929), 22-37.
  • 21. J. H. Williamson, Compact linear operators in linear topological spaces, J. London Math. Soc 29 (1954) 149-156. MR 15:801c
  • 22. N. Yanagihara, Multipliers and linear functionals for the class $N^+$, Trans. Amer. Math. Soc. 180 (1973), 449-461. MR 49:3147

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47B38, 30D55

Retrieve articles in all journals with MSC (1991): 47B38, 30D55

Additional Information

Jun Soo Choa
Affiliation: Department of Mathematics Education, Sung Kyun Kwan University, Jongro-Gu, Seoul 110–745, Korea

Hong Oh Kim
Affiliation: Department of Mathematics, KAIST, Taejon 305–701, Korea

Joel H. Shapiro
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824-1027

Keywords: Composition operator, Smirnov class, compact operator
Received by editor(s): May 29, 1998
Received by editor(s) in revised form: September 10, 1998
Published electronically: December 8, 1999
Additional Notes: This research was supported in part by BSRI, KOSEF, and NSF
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society